CIESC Journal ›› 2016, Vol. 67 ›› Issue (7): 2970-2978.DOI: 10.11949/j.issn.0438-1157.20160032
Previous Articles Next Articles
FENG Dongdong, ZHAO Yijun, ZHANG Yu, QIAN Juan, SUN Shaozeng
Received:
2016-01-08
Revised:
2016-02-03
Online:
2016-07-05
Published:
2016-07-05
Supported by:
supported by the National Natural Science Foundation of China (51206037) and the Postdoctoral Fund in China(2013M541376).
冯冬冬, 赵义军, 张宇, 钱娟, 孙绍增
通讯作者:
赵义军
基金资助:
国家自然科学基金项目(51206037);中国博士后基金项目(2013M541376)。
CLC Number:
FENG Dongdong, ZHAO Yijun, ZHANG Yu, QIAN Juan, SUN Shaozeng. Effect of K and Ca elements on transient light hydrocarbons and oxygen-containing gases during biomass fast pyrolysis[J]. CIESC Journal, 2016, 67(7): 2970-2978.
冯冬冬, 赵义军, 张宇, 钱娟, 孙绍增. K和Ca元素对生物质快速热解瞬态轻烃及含氧气体的影响[J]. 化工学报, 2016, 67(7): 2970-2978.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20160032
[1] | 巴苏. 生物质气化和热解:实际设计和理论[M]. 北京: 学术出版社, 2010. BASU P. Biomass Gasification and Pyrolysis: Practical Design and Theory[M]. Beijing: Academic Press, 2010. |
[2] | 孙立, 张晓东. 生物质热解气化原理与技术[M]. 北京:化学工业出版社, 2013. SUN L, ZHANG X D. Biomass Pyrolysis Gasification Principle and Technology[M]. Beijing: Chemical Industry Press, 2013. |
[3] | 骆仲泱, 周劲松, 王树荣, 等. 中国生物质能利用技术评价[J]. 中国能源, 2004, 26(9):39-42. LUO Z Y, ZHOU J S, WANG S R, et al. Evaluation of utilization technology of biomass energy in China[J]. China Energy, 2004, 26(9):39-42. |
[4] | MCKENDRY P. Energy production from biomass (Ⅰ): Overview of biomass[J]. Bioresource Technology, 2002, 83(1): 37-46. |
[5] | DEMIRBAS A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues[J]. Journal of Analytical and Applied Pyrolysis, 2004, 72(2): 243-248. |
[6] | WORASUWANNARAK N, SONOBE T, TANTHAPANICKAKOON W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(2): 265-271. |
[7] | HOSOYA T, KAWAMOTO H, SAKA S. Pyrolysis behaviors of wood and its constituent polymers at gasification temperature[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(2): 328-336. |
[8] | VAN DE VELDEN M, BAEYENS J, BREMS A, et al. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction[J]. Renewable Energy, 2010, 35(1): 232-242. |
[9] | 黄晓露. 木质素模型化合物热解的微观机理研究[D]. 重庆: 重庆大学, 2012. HUANG X L. Studies of molecular level pyrolysis mechanism of lignin model compounds[D]. Chongqing: Chongqing University, 2012. |
[10] | 叶代勇, 黄洪, 傅和青, 等. 纤维素化学研究进展[J]. 化工学报, 2006, 57(8): 1782-1791. YE D Y, HUANG H, FU H Q, et al. Advances in cellulose chemistry[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(8): 1782-1791. |
[11] | YU Z P, PENG H, LIN D, et al. The structure characteristic of hemicellulose:a review[J]. Polymer Bulletin, 2011, (6): 48-54. |
[12] | SHUNAN H, MINGHUA L, JUAN F, et al. Research status and progress of lignin adsorbent[J]. Paper Science and Technology, 2004, 23(2): 38-43. |
[13] | 谭洪, 王树荣, 骆仲泱, 等. 木质素快速热裂解试验研究[J]. 浙江大学学报(工学版), 2005, 39(5): 710-714. TAN H, WANG S R, LUO Z Y, et al. Experimental study of lignin flash pyrolysis[J]. Journal of Zhejiang University (Engineering Science), 2005, 39(5): 710-714. |
[14] | FAHMI R, BRIDGWATER A, DARVELL L, et al. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow[J]. Fuel, 2007, 86(10): 1560-1569. |
[15] | SHIMADA N, KAWAMOTO H, SAKA S. Different action of alkali/alkaline earth metal chlorides on cellulose pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2008, 81(1): 80-87. |
[16] | NIK-AZAR M, HAHALIGOL M, SOHRABI M, et al. Mineral matter effects in rapid pyrolysis of beech wood[J]. Fuel Processing Technology, 1997, 51(1): 7-17. |
[17] | PATWARDHAN P R, SATRIO J A, BROWN R C, et al. Influence of inorganic salts on the primary pyrolysis products of cellulose[J]. Bioresource Technology, 2010, 101(12): 4646-4655. |
[18] | NOWAKOWSKI D J, JONES J M. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds[J]. Journal of Analytical and Applied Pyrolysis, 2008, 83(1): 12-25. |
[19] | 温雨鑫. 高升温速率和压力条件下的煤热解和气化特性研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2013. WEN Y X. Research on the characteristics of coal pyrolysis and gasification at high heating rates and high pressure[D]. Beijing: University of Chinese Academy of Sciences, 2013. |
[20] | SONG Y, XIANG J, HU S, et al. Importance of the aromatic structures in volatiles to the in-situ destruction of nascent tar during the volatile-char interactions[J]. Fuel Processing Technology, 2015, 132: 31-38. |
[21] | YANG C, DING Y, LIU S, et al. Experiment research of wheat straw fast pyrolysis[J]. Chemistry & Bioengineering, 2005, 22(8): 13-15. |
[22] | WU S, LUAN J, SUN R, et al. Gas phase analysis of biomass fast pyrolysis [J]. Acta Energiae Solaris Sinica, 2009, 30(11): 1554-1560. |
[23] | ZHAO Y J, FENG D D, ZHANG Y, et al. Effect of pyrolysis temperature on char structure and chemical speciation of alkali and alkaline earth metallic species in biochar[J]. Fuel Processing Technology, 2015, 141(1):54-60. |
[24] | LI C Z, SATHE C, KERSHAW J R, et al. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal[J]. Fuel, 2000, 79(s 3/4): 427-438. |
[25] | SATHE C, PANG Y, LI C Z. Effects of heating rate and ion-exchangeable cations on the pyrolysis yields from a Victorian brown coal[J]. Energy & Fuels, 1999, 13(3): 748-755. |
[26] | LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007, 86(12): 1664-1683. |
[27] | GUO D L, WU S B, LIU B, et al. Catalytic effects of NaOH and Na2CO3 additives on alkali lignin pyrolysis and gasification[J]. Applied Energy, 2012, 95(2): 22-30. |
[28] | GUO D L, WU S B, RUI L, et al. Effect of organic bound Na groups on pyrolysis and CO2-gasification of alkali lignin[J]. Bioresources. 2011, 6(4): 4145-4157. |
[29] | ZHANG L X, KUDO S, TSUBOUCHI N, et al. Catalytic effects of Na and Ca from inexpensive materials on in-situ steam gasification of char from rapid pyrolysis of low rank coal in a drop-tube reactor[J]. Fuel Processing Technology, 2013, 113: 1-7. |
[30] | ZHANG M, RESENDE F L, MOUTSOGLOU A, et al. Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2012, 98: 65-71. |
[31] | BRITT P F, BUCHANAN A, THOMAS K B, et al. Pyrolysis mechanisms of lignin: surface-immobilized model compound investigation of acid-catalyzed and free-radical reaction pathways[J]. Journal of Analytical and Applied Pyrolysis, 1995, 33: 1-19. |
[32] | LIU Q, WANG S, ZHENG Y, et al. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 170-177. |
[33] | WANG S, WANG K, LIU Q, et al. Comparison of the pyrolysis behavior of lignins from different tree species[J]. Biotechnology Advances, 2009, 27(5): 562-567. |
[34] | WORNAT M J, HURT R H, YANG N Y, et al. Structural and compositional transformations of biomass chars during combustion[J]. Combustion and Flame, 1995, 100(1): 131-143. |
[35] | WORNAT M J, NELSON P F. Effects of ion-exchanged calcium on brown coal tar composition as determined by Fourier transform infrared spectroscopy[J]. Energy & Fuels, 1992, 6(2): 136-142. |
[36] | WORNAT M J, SAKUROVS R. Proton magnetic resonance thermal analysis of a brown coal: effects of ion-exchanged metals[J]. Fuel, 1996, 75(7): 867-871. |
[37] | LI C Z, NELSON P F. Fate of aromatic ring systems during thermal cracking of tars in a fluidized-bed reactor[J]. Energy & Fuels, 1996, 10(5): 1083-1090. |
[38] | LI C Z, MADRALI E S, WU F, et al. Comparison of thermal breakdown in coal pyrolysis and liquefaction[J]. Fuel, 1994, 73(6): 851-865. |
[39] | LI C Z, WU F, CAI H Y, et al. UV-fluorescence spectroscopy of coal pyrolysis tars[J]. Energy & Fuels, 1994, 8(5): 1039-1048. |
[40] | GRAY V R. The role of explosive ejection in the pyrolysis of coal[J]. Fuel, 1988, 67(9): 1298-1304. |
[41] | SAITO M, SADAJATA M, SATO M, et al. Combustion rates of pulverized coal particles in high-temperature/high-oxygen concentration atmosphere[J]. Combustion and Flame, 1991, 87(1): 1-12. |
[42] | SATHE C, PANG Y, LI C Z. Effects of heating rate and ion-exchangeable cations on the pyrolysis yields from a Victorian brown coal[J]. Energy & Fuels, 1999, 13(3): 748-755. |
[1] | Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics [J]. CIESC Journal, 2023, 74(S1): 122-131. |
[2] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[3] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Yingying TAN, Xiaoqing LIU, Lin WANG, Lisheng HUANG, Xiuzhen LI, Zhanwei WANG. Experimental study on startup dynamic characteristics of R1150/R600a auto-cascade refrigeration cycle [J]. CIESC Journal, 2023, 74(S1): 213-222. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Qihong ZOU, Qian LI, Tianshu GE. Experimental study of two-stage parallel desiccant coated heat pump system based on multi-objectives [J]. CIESC Journal, 2023, 74(S1): 265-271. |
[8] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[9] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[10] | Weiqi JIN, Yuerong WU, Xia WANG, Li LI, Su QIU, Pan YUAN, Minghe WANG. Progress in infrared imaging detection technology and domestic equipment for industrial gas leakage in chemical industry parks [J]. CIESC Journal, 2023, 74(S1): 32-44. |
[11] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[12] | Di WU, Bin HU, Ruzhu WANG, Junyu LIANG. Performance analysis of water vapor quasi-saturated compression high temperature heat pump system [J]. CIESC Journal, 2023, 74(S1): 45-52. |
[13] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[14] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[15] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||