CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2413-2425.DOI: 10.11949/0438-1157.20201327
• Reviews and monographs • Previous Articles Next Articles
MAO Jinzhu1,3(),XIAO Shuling1,2,YANG Zhichun1,2,WANG Xiaoyu1,4,ZHANG Shi1,5,CHEN Junhong1,2,XIE Jisheng1,2,CHEN Fude1,2,HUANG Zinuo1,2,FENG Tianyu1,2,ZHANG Aihui1,2,6(),FANG Baishan1,2,6,7()
Received:
2020-09-17
Revised:
2020-12-23
Online:
2021-05-05
Published:
2021-05-05
Contact:
ZHANG Aihui,FANG Baishan
毛金竹1,3(),肖淑玲1,2,杨智淳1,2,王孝宇1,4,张诗1,5,陈俊宏1,2,谢佶晟1,2,陈福德1,2,黄子诺1,2,冯天宇1,2,张瑷珲1,2,6(),方柏山1,2,6,7()
通讯作者:
张瑷珲,方柏山
作者简介:
毛金竹(1999—),女,硕士研究生,CLC Number:
MAO Jinzhu, XIAO Shuling, YANG Zhichun, WANG Xiaoyu, ZHANG Shi, CHEN Junhong, XIE Jisheng, CHEN Fude, HUANG Zinuo, FENG Tianyu, ZHANG Aihui, FANG Baishan. Application of synthetic biology in pesticides residues detection[J]. CIESC Journal, 2021, 72(5): 2413-2425.
毛金竹, 肖淑玲, 杨智淳, 王孝宇, 张诗, 陈俊宏, 谢佶晟, 陈福德, 黄子诺, 冯天宇, 张瑷珲, 方柏山. 合成生物学在农残检测领域的应用[J]. 化工学报, 2021, 72(5): 2413-2425.
Add to citation manager EndNote|Ris|BibTeX
化合物 | 关键基因元件 | 底盘生物 | 输出信号 | 检测限(LOD) | 文献 |
---|---|---|---|---|---|
林丹(γ-HCH) | linA2 | E. coli | 电导率 | 2×10-12 | [ |
阿特拉津 | atrABC atzR、atzDEF | E. coli SM004 | 生物发光(LuxCDABE) | 1.08 μmol/L | [ |
对氧磷 | opd | E. coli DH5α | pH | 1 μmol/L | [ |
有机磷 | opd | E. coli | pH | 2 μmol/L | [ |
有机磷 | opd、mpd | E. coli XL1-Blue | 荧光(GFP) | 2 μmol/L | [ |
对氧磷 | opd | S. cerevisiae MT8-1 | 荧光(EGFP) | — | [ |
对氧磷和对硫磷、蝇毒磷 | opd | E. coli | 光纤 | 对氧磷和对硫磷(3 μmol/L) 蝇毒磷(5 μmol/L) | [ |
有机磷 | opd | E. coli BL21 | 吸光度 | 对氧磷(0.2 μmol/L) 对硫磷(0.4 μmol/L) 甲基对硫磷(1 μmol/L) | [ |
有机磷 | opd | Pseudomonas putida JS444 | 电流 | 对氧磷(0.28×10-9) 甲基对硫磷(0.26×10-9) 对硫磷(0.29×10-9) | [ |
有机磷 | opd | Moraxella sp. | 电流 | 对氧磷(0.2 μmol/L) 甲基对硫磷(1 μmol/L) | [ |
毒死蜱 | chpR、chpA-atsBA | E. coli | 生物发光 | 25 nmol/L | [ |
乙基对氧磷 | opd、pnpR-pnpC | E. coli XL1-Blue E. coli DH5α | 颜色 | 1 nmol/L | [ |
3-苯氧基苯甲酸 | VHH、amilCP | E. coli | 沉淀 | 3 ng/ml | [ |
呋喃丹 | H5 DNA | E. coli HB101 | 荧光(EGFP) | 1 ng/L | [ |
Table 1 Application of synthetic biology in pesticide residue detection
化合物 | 关键基因元件 | 底盘生物 | 输出信号 | 检测限(LOD) | 文献 |
---|---|---|---|---|---|
林丹(γ-HCH) | linA2 | E. coli | 电导率 | 2×10-12 | [ |
阿特拉津 | atrABC atzR、atzDEF | E. coli SM004 | 生物发光(LuxCDABE) | 1.08 μmol/L | [ |
对氧磷 | opd | E. coli DH5α | pH | 1 μmol/L | [ |
有机磷 | opd | E. coli | pH | 2 μmol/L | [ |
有机磷 | opd、mpd | E. coli XL1-Blue | 荧光(GFP) | 2 μmol/L | [ |
对氧磷 | opd | S. cerevisiae MT8-1 | 荧光(EGFP) | — | [ |
对氧磷和对硫磷、蝇毒磷 | opd | E. coli | 光纤 | 对氧磷和对硫磷(3 μmol/L) 蝇毒磷(5 μmol/L) | [ |
有机磷 | opd | E. coli BL21 | 吸光度 | 对氧磷(0.2 μmol/L) 对硫磷(0.4 μmol/L) 甲基对硫磷(1 μmol/L) | [ |
有机磷 | opd | Pseudomonas putida JS444 | 电流 | 对氧磷(0.28×10-9) 甲基对硫磷(0.26×10-9) 对硫磷(0.29×10-9) | [ |
有机磷 | opd | Moraxella sp. | 电流 | 对氧磷(0.2 μmol/L) 甲基对硫磷(1 μmol/L) | [ |
毒死蜱 | chpR、chpA-atsBA | E. coli | 生物发光 | 25 nmol/L | [ |
乙基对氧磷 | opd、pnpR-pnpC | E. coli XL1-Blue E. coli DH5α | 颜色 | 1 nmol/L | [ |
3-苯氧基苯甲酸 | VHH、amilCP | E. coli | 沉淀 | 3 ng/ml | [ |
呋喃丹 | H5 DNA | E. coli HB101 | 荧光(EGFP) | 1 ng/L | [ |
1 | Food and Agriculture Organization of the United Nations. The FAO Corporate Database, FAOSTAT: agri-environmental indicators/pesticides [EB/OL]. [2020-12-20]. . |
2 | Sharma A, Shukla A, Attri K, et al. Global trends in pesticides: a looming threat and viable alternatives[J]. Ecotoxicology and Environmental Safety, 2020, 201: 110812. |
3 | Khan M A, Ahmad W. Microbes for Sustainable Insect Pest Management: an Eco-Friendly Approach [M]. Cham: Springer, 2019: 2-6. |
4 | Huntscha S, Singer H, Canonica S, et al. Input dynamics and fate in surface water of the herbicide metolachlor and of its highly mobile transformation product metolachlor ESA[J]. Environmental Science & Technology, 2008, 42(15): 5507-5513. |
5 | Li J, Zhang G, Qi S H, et al. Concentrations, enantiomeric compositions, and sources of HCH, DDT and chlordane in soils from the Pearl River Delta, South China[J]. Science of the Total Environment, 2006, 372(1): 215-224. |
6 | Gil Y, Sinfort C. Emission of pesticides to the air during sprayer application: a bibliographic review[J]. Atmospheric Environment, 2005, 39(28): 5183-5193. |
7 | Kurt-Karakus P B, Teixeira C, Small J, et al. Current-use pesticides in inland lake waters, precipitation, and air from Ontario, Canada[J]. Environmental Toxicology and Chemistry, 2011, 30(7): 1539-1548. |
8 | Abreu-Villaça Y, Levin E D. Developmental neurotoxicity of succeeding generations of insecticides[J]. Environment International, 2017, 99: 55-77. |
9 | Jokanović M. Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man: a review[J]. Toxicology, 2018, 410: 125-131. |
10 | Jaga K, Dharmani C. Ocular toxicity from pesticide exposure: a recent review[J]. Environmental Health and Preventive Medicine, 2006, 11(3): 102-107. |
11 | Abolhassani M, Asadikaram G, Paydar P, et al. Organochlorine and organophosphorous pesticides may induce colorectal cancer: a case-control study[J]. Ecotoxicology and Environmental Safety, 2019, 178: 168-177. |
12 | Mehrpour O, Karrari P, Zamani N, et al. Occupational exposure to pesticides and consequences on male semen and fertility: a review[J]. Toxicology Letters, 2014, 230(2): 146-156. |
13 | Ross G W, Abbott R D, Petrovitch H, et al. Association of brain heptachlor epoxide and other organochlorine compounds with lewy pathology[J]. Movement Disorders, 2019, 34(2): 228-235. |
14 | Pavlikova N, Smetana P, Halada P, et al. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells[J]. Environmental Research, 2015, 142: 257-263. |
15 | Gascon M, Vrijheid M, Martínez D, et al. Pre-natal exposure to dichlorodiphenyldichloroethylene and infant lower respiratory tract infections and wheeze[J]. European Respiratory Journal, 2012, 39(5): 1188-1196. |
16 | Alavanja M C R, Bonner M R. Occupational pesticide exposures and cancer risk: a review[J]. Journal of Toxicology and Environmental Health, Part B, 2012, 15(4): 238-263. |
17 | Wang Q, Shen J Y, Zhang R, et al. Effects and mechanisms of pyrethroids on male reproductive system[J]. Toxicology, 2020, 438: 152460. |
18 | Xu H D, Mao Y, Xu B C. Association between pyrethroid pesticide exposure and hearing loss in adolescents[J]. Environmental Research, 2020, 187: 109640. |
19 | Chawla P, Kaushik R, Shiva Swaraj V J, et al. Organophosphorus pesticides residues in food and their colorimetric detection[J]. Environmental Nanotechnology, Monitoring & Management, 2018, 10: 292-307. |
20 | 张莉鸽, 王伟伟, 胡海洋, 等. 合成生物学在环境有害物监测及生物控制中的应用[J]. 生物产业技术, 2019, (1): 67-74. |
Zhang L G, Wang W W, Hu H Y, et al. Application of synthetic biology in environmental hazard monitoring and biocontainment[J]. Biotechnology & Business, 2019, (1): 67-74. | |
21 | Rainina E I, Efremenco E N, Varfolomeyev S D, et al. The development of a new biosensor based on recombinant E. coli for the direct detection of organophosphorus neurotoxins[J]. Biosensors and Bioelectronics, 1996, 11(10): 991-1000. |
22 | Liu R H, Yang C, Xu Y M, et al. Development of a whole-cell biocatalyst/biosensor by display of multiple heterologous proteins on the Escherichia coli cell surface for the detoxification and detection of organophosphates[J]. Journal of Agricultural and Food Chemistry, 2013, 61(32): 7810-7816. |
23 | van Dyk J S, Pletschke B. Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment[J]. Chemosphere, 2011, 82(3): 291-307. |
24 | Samsidar A, Siddiquee S, Shaarani S M. A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs[J]. Trends in Food Science & Technology, 2018, 71: 188-201. |
25 | Jiang Y B, Zhong M, Ma Y Y. The rapid selecting of precursor ions and product ions of thirty-four kinds of pesticide for content determination by GC-EI/MS/MS[J]. Food Control, 2014, 43: 110-114. |
26 | Martínez Vidal J L, Plaza-Bolaños P, Romero-González R, et al. Determination of pesticide transformation products: a review of extraction and detection methods[J]. Journal of Chromatography A, 2009, 1216(40): 6767-6788. |
27 | Watanabe E. The present state and perspective on simple and rapid immunochemical detection for pesticide residues in crops[J]. Japan Agricultural Research Quarterly, 2011, 45(4): 359-370. |
28 | Huo J Q, Li Z F, Wan D B, et al. Development of a highly sensitive direct competitive fluorescence enzyme immunoassay based on a nanobody-alkaline phosphatase fusion protein for detection of 3-phenoxybenzoic acid in urine[J]. Journal of Agricultural and Food Chemistry, 2018, 66(43): 11284-11290. |
29 | Bever C S, Dong J X, Vasylieva N, et al. VHH antibodies: emerging reagents for the analysis of environmental chemicals[J]. Analytical and Bioanalytical Chemistry, 2016, 408(22): 5985-6002. |
30 | Liu J L, Zabetakis D, Lee A B, et al. Single domain antibody-alkaline phosphatase fusion proteins for antigen detection—analysis of affinity and thermal stability of single domain antibody[J]. Journal of Immunological Methods, 2013, 393(1/2): 1-7. |
31 | El-Moghazy A Y, Huo J Q, Amaly N, et al. An innovative nanobody-based electrochemical immunosensor using decorated nylon nanofibers for point-of-care monitoring of human exposure to pyrethroid insecticides[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6159-6168. |
32 | Xu Z L, Dong J X, Wang H, et al. Production and characterization of a single-chain variable fragment linked alkaline phosphatase fusion protein for detection of O, O-diethyl organophosphorus pesticides in a one-step enzyme-linked immunosorbent assay[J]. Journal of Agricultural and Food Chemistry, 2012, 60(20): 5076-5083. |
33 | Zhao F C, Tian Y, Wang H M, et al. Development of a biotinylated broad-specificity single-chain variable fragment antibody and a sensitive immunoassay for detection of organophosphorus pesticides[J]. Analytical and Bioanalytical Chemistry, 2016, 408(23): 6423-6430. |
34 | Zhang Y Q, Xu Z L, Wang F, et al. Isolation of Bactrian camel single domain antibody for parathion and development of one-step dc-FEIA method using VHH-alkaline phosphatase fusion protein[J]. Analytical Chemistry, 2018, 90(21): 12886-12892. |
35 | Xu Z L, Zeng D P, Yang J Y, et al. Monoclonal antibody-based broad-specificity immunoassay for monitoring organophosphorus pesticides in environmental water samples[J]. Journal of Environmental Monitoring, 2011, 13(11): 3040. |
36 | Sánchez-Hernández L, Hernández-Domínguez D, Bernal J, et al. Capillary electrophoresis-mass spectrometry as a new approach to analyze neonicotinoid insecticides[J]. Journal of Chromatography A, 2014, 1359: 317-324. |
37 | Chui M Q, Thang L Y, See H H. Integration of the free liquid membrane into electrokinetic supercharging - capillary electrophoresis for the determination of cationic herbicides in environmental water samples[J]. Journal of Chromatography A, 2017, 1481: 145-151. |
38 | Chen J M, Huang Y J, Kannan P, et al. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables[J]. Analytical Chemistry, 2016, 88(4): 2149-2155. |
39 | Hou R Y, Pang S, He L L. In situ SERS detection of multi-class insecticides on plant surfaces[J]. Analytical Methods, 2015, 7(15): 6325-6330. |
40 | Alsammarraie F K, Lin M S. Using standing gold nanorod arrays as surface-enhanced Raman spectroscopy (SERS) substrates for detection of carbaryl residues in fruit juice and milk[J]. Journal of Agricultural and Food Chemistry, 2017, 65(3): 666-674. |
41 | He L L, Chen T, Labuza T P. Recovery and quantitative detection of thiabendazole on apples using a surface swab capture method followed by surface-enhanced Raman spectroscopy[J]. Food Chemistry, 2014, 148: 42-46. |
42 | Caetano J, Machado S A S. Determination of carbaryl in tomato “in natura” using an amperometric biosensor based on the inhibition of acetylcholinesterase activity[J]. Sensors and Actuators B: Chemical, 2008, 129(1): 40-46. |
43 | Chauhan N, Pundir C S. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides[J]. Analytica Chimica Acta, 2011, 701(1): 66-74. |
44 | Horáček J, Skládal P. Improved direct piezoelectric biosensors operating in liquid solution for the competitive label-free immunoassay of 2, 4-dichlorophenoxyacetic acid[J]. Analytica Chimica Acta, 1997, 347(1/2): 43-50. |
45 | Shang Z J, Xu Y L, Gu Y X Z, et al. A rapid detection of pesticide residue based on piezoelectric biosensor[J]. Procedia Engineering, 2011, 15: 4480-4485. |
46 | Wang X Z, Hou T, Dong S S, et al. Fluorescence biosensing strategy based on mercury ion-mediated DNA conformational switch and nicking enzyme-assisted cycling amplification for highly sensitive detection of carbamate pesticide[J]. Biosensors and Bioelectronics, 2016, 77: 644-649. |
47 | Zheng Z Z, Li X Y, Dai Z F, et al. Detection of mixed organophosphorus pesticides in real samples using quantum dots/bi-enzyme assembly multilayers[J]. Journal of Materials Chemistry, 2011, 21(42): 16955-16962. |
48 | Anu Prathap M U, Chaurasia A K, Sawant S N, et al. Polyaniline-based highly sensitive microbial biosensor for selective detection of lindane[J]. Analytical Chemistry, 2012, 84(15): 6672-6678. |
49 | Hua A, Gueuné H, Cregut M, et al. Development of a bacterial bioassay for atrazine and cyanuric acid detection[J]. Frontiers in Microbiology, 2015, 6: 211. |
50 | Mulchandani A, Mulchandani P, Kaneva I, et al. Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase(1): Potentiometric microbial electrode[J]. Analytical Chemistry, 1998, 70(19): 4140-4145. |
51 | Fukuda T, Tsuchiya K, Makishima H, et al. Organophosphorus compound detection on a cell chip with yeast coexpressing hydrolase and eGFP[J]. Biotechnology Journal, 2010, 5(5): 515-519. |
52 | Mulchandani A, Kaneva I, Chen W. Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase(2): Fiber-optic microbial biosensor[J]. Analytical Chemistry, 1998, 70(23): 5042-5046. |
53 | Tang X J, Liang B, Yi T Y, et al. Cell surface display of organophosphorus hydrolase for sensitive spectrophotometric detection of p-nitrophenol substituted organophosphates[J]. Enzyme and Microbial Technology, 2014, 55: 107-112. |
54 | Lei Y, Mulchandani P, Wang J, et al. Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents[J]. Environmental Science & Technology, 2005, 39(22): 8853-8857. |
55 | Mulchandani P, Chen W, Mulchandani A, et al. Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase[J]. Biosensors and Bioelectronics, 2001, 16(7/8): 433-437. |
56 | Whangsuk W, Thiengmag S, Dubbs J, et al. Specific detection of the pesticide chlorpyrifos by a sensitive genetic-based whole cell biosensor[J]. Analytical Biochemistry, 2016, 493: 11-13. |
57 | Khatun M A, Hoque M A, Zhang Y, et al. Bacterial consortium-based sensing system for detecting organophosphorus pesticides[J]. Analytical Chemistry, 2018, 90(17): 10577-10584. |
58 | Riangrungroj P, Bever C S, Hammock B D, et al. A label-free optical whole-cell Escherichia coli biosensor for the detection of pyrethroid insecticide exposure[J]. Scientific Reports, 2019, 9(1): 12466-12469. |
59 | 张昊, 刘传志, 徐影, 等. 生物荧光传感器检测环境水样中氨基甲酸酯类农药残留[J]. 分析化学, 2014, 42(1): 104-108. |
Zhang H, Liu C Z, Xu Y, et al. A sensitive detection method for carbamate pesticide by fluorescence biosensor[J]. Chinese Journal of Analytical Chemistry, 2014, 42(1): 104-108. | |
60 | Yang C, Zhu Y, Yang J, et al. Development of an autofluorescent whole-cell biocatalyst by displaying dual functional moieties on Escherichia coli cell surfaces and construction of a coculture with organophosphate-mineralizing activity[J]. Applied and Environmental Microbiology, 2008, 74(24): 7733-7739. |
61 | Senbua W, Mearnchu J, Wichitwechkarn J. Easy-to-use and reliable absorbance-based MPH-GST biosensor for the detection of methyl parathion pesticide[J]. Biotechnology Reports, 2020, 27: e00495. |
62 | Ekkhunnatham A, Jongsareejit B, Yamkunthong W, et al. Purification and characterization of methyl parathion hydrolase from Burkholderia cepacia capable of degrading organophosphate insecticides[J]. World Journal of Microbiology and Biotechnology, 2012, 28(4): 1739-1746. |
63 | Lei Y, Mulchandani A, Chen W. Improved degradation of organophosphorus nerve agents and p-nitrophenol by Pseudomonas putida JS444 with surface-expressed organophosphorus hydrolase[J]. Biotechnology Progress, 2005, 21(3): 678-681. |
64 | Chong H Q, Ching C B. Development of colorimetric-based whole-cell biosensor for organophosphorus compounds by engineering transcription regulator DmpR[J]. ACS Synthetic Biology, 2016, 5(11): 1290-1298. |
65 | Takeyoshi M, Yamasaki K, Sawaki M, et al. The efficacy of endocrine disruptor screening tests in detecting anti-estrogenic effects downstream of receptor-ligand interactions[J]. Toxicology Letters, 2002, 126(2): 91-98. |
66 | Sun H, Chen W, Xu X L, et al. Pyrethroid and their metabolite, 3-phenoxybenzoic acid showed similar (anti)estrogenic activity in human and rat estrogen receptor α-mediated reporter gene assays[J]. Environmental Toxicology and Pharmacology, 2014, 37(1): 371-377. |
67 | Lentini R, Forlin M, Martini L, et al. Fluorescent proteins and in vitro genetic organization for cell-free synthetic biology[J]. ACS Synthetic Biology, 2013, 2(9): 482-489. |
68 | Karig D K. Cell-free synthetic biology for environmental sensing and remediation[J]. Current Opinion in Biotechnology, 2017, 45: 69-75. |
69 | Pellinen T, Huovinen T, Karp M. A cell-free biosensor for the detection of transcriptional inducers using firefly luciferase as a reporter[J]. Analytical Biochemistry, 2004, 330(1): 52-57. |
70 | Hu J X, Zhu T, Li Q L. Chapter 3 organochlorine pesticides in China[M]//Li A, Tanabe S, Jiang G, et al. Developments in Environmental Science. Amsterdam: Elsevier, 2007: 159-211. |
71 | Gong T, Liu R H, Zuo Z Q, et al. Metabolic engineering of Pseudomonas putida KT2440 for complete mineralization of methyl parathion and γ-hexachlorocyclohexane[J]. ACS Synthetic Biology, 2016, 5(5): 434-442. |
72 | Mulchandani A, Rajesh. Microbial biosensors for organophosphate pesticides[J]. Applied Biochemistry and Biotechnology, 2011, 165(2): 687-699. |
73 | Richins R D, Kaneva I, Mulchandani A, et al. Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase[J]. Nature Biotechnology, 1997, 15(10): 984-987. |
74 | Nishino S F, Spain J C. Cell density-dependent adaptation of Pseudomonas putida to biodegradation of p-nitrophenol[J]. Environmental Science & Technology, 1993, 27(3): 489-494. |
75 | Lei Y, Mulchandani P, Chen W, et al. Direct determination of p-nitrophenyl substituent organophosphorus nerve agents using a recombinant Pseudomonas putida JS444-modified Clark oxygen electrode[J]. Journal of Agricultural and Food Chemistry, 2005, 53(3): 524-527. |
76 | Spain J C, Wyss O, Gibson D T. Enzymatic oxidation of p-nitrophenol[J]. Biochemical and Biophysical Research Communications, 1979, 88(2): 634-641. |
77 | Mulchandani P, Chen W, Mulchandani A. Microbial biosensor for direct determination of nitrophenyl-substituted organophosphate nerve agents using genetically engineered Moraxella sp[J]. Analytica Chimica Acta, 2006, 568(1/2): 217-221. |
78 | Schofield D A, Westwater C, Barth J L, et al. Development of a yeast biosensor-biocatalyst for the detection and biodegradation of the organophosphate paraoxon[J]. Applied Microbiology and Biotechnology, 2007, 76(6): 1383-1394. |
79 | 王东方, 刘爽, 付骋宇, 等. 拟除虫菊酯类农药通用人工抗原合成及免疫原性鉴定[J]. 农药, 2015, 54(7): 480-484. |
Wang D F, Liu S, Fu C Y, et al. Synthesis of generic antigen and identification of its immune activity for pyrethroid insecticides[J]. Agrochemicals, 2015, 54(7): 480-484. | |
80 | Ahn K C, Kim H J, McCoy M R, et al. Immunoassays and biosensors for monitoring environmental and human exposure to pyrethroid insecticides[J]. Journal of Agricultural and Food Chemistry, 2011, 59(7): 2792-2802. |
81 | Meiqing J L L C. Estrogenic activities of two synthetic pyrethroids and their metabolites[J]. Journal of Environmental Sciences, 2010, 22(2): 290-296. |
82 | Sun H, Xu X L, Xu L C, et al. Antiandrogenic activity of pyrethroid pesticides and their metabolite in reporter gene assay[J]. Chemosphere, 2007, 66(3): 474-479. |
83 | Du G Z, Shen O X, Sun H, et al. Assessing hormone receptor activities of pyrethroid insecticides and their metabolites in reporter gene assays[J]. Toxicological Sciences, 2010, 116(1): 58-66. |
84 | Kunimatsu T, Yamada T, Ose K, et al. Lack of (anti-) androgenic or estrogenic effects of three pyrethroids (esfenvalerate, fenvalerate, and permethrin) in the hershberger and uterotrophic assays[J]. Regulatory Toxicology and Pharmacology, 2002, 35(2): 227-237. |
85 | Qian S H, Lin H W. Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides[J]. Analytical Chemistry, 2015, 87(10): 5395-5400. |
86 | Feng F D, Tang Y L, Wang S, et al. Continuous fluorometric assays for acetylcholinesterase activity and inhibition with conjugated polyelectrolytes[J]. Angewandte Chemie International Edition, 2007, 46(41): 7882-7886. |
87 | Ufarté L, Laville E, Duquesne S, et al. Discovery of carbamate degrading enzymes by functional metagenomics[J]. PLoS One, 2017, 12(12): e0189201. |
88 | Shin H J. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution[J]. Applied Microbiology and Biotechnology, 2011, 89(4): 867-877. |
89 | Bechor O, Smulski D R, van Dyk T K, et al. Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fabA': lux fusions[J]. Journal of Biotechnology, 2002, 94(1): 125-132. |
90 | Norman A, Hestbjerg H L, Sørensen S J. Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters[J]. Applied and Environmental Microbiology, 2005, 71(5): 2338-2346. |
91 | Medintz I L, Deschamps J R. Maltose-binding protein: a versatile platform for prototyping biosensing[J]. Current Opinion in Biotechnology, 2006, 17(1): 17-27. |
92 | Bilal M, Iqbal H M N. Microbial-derived biosensors for monitoring environmental contaminants: recent advances and future outlook[J]. Process Safety and Environmental Protection, 2019, 124: 8-17. |
93 | van der Meer J R, Belkin S. Where microbiology meets microengineering: design and applications of reporter bacteria[J]. Nature Reviews Microbiology, 2010, 8(7): 511-522. |
[1] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[2] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[3] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[4] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[5] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[6] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[7] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[8] | Yang HU, Yan SUN. Self-propulsion of enzyme and enzyme-induced micro-/nanomotor [J]. CIESC Journal, 2023, 74(1): 116-132. |
[9] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
[10] | Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement [J]. CIESC Journal, 2022, 73(9): 4095-4102. |
[11] | Xue LIU, Lijuan ZHANG, Guangrong ZHAO. Commensalistic Escherichia coli coculture for biosynthesis of daidzein [J]. CIESC Journal, 2022, 73(9): 4015-4024. |
[12] | Shaojie AN, Hongfeng XU, Si LI, Yuanhang XU, Jiaxi LI. Construction of pH sensitive artificial glutathione peroxidase based on the formation and dissociation of molecular machine [J]. CIESC Journal, 2022, 73(8): 3669-3678. |
[13] | Yuelin WANG, Wei CHAO, Xiaocheng LAN, Zhipeng MO, Shuhuan TONG, Tiefeng WANG. Review of ethanol production via biological syngas fermentation [J]. CIESC Journal, 2022, 73(8): 3448-3460. |
[14] | Xinzhe ZHANG, Wentao SUN, Bo LYU, Chun LI. Oxidative modification of plant natural products and microbial manufacturing [J]. CIESC Journal, 2022, 73(7): 2790-2805. |
[15] | Jing WAN, Lin ZHANG, Yachao FAN, Xiemin LIU, Peicheng LUO, Feng ZHANG, Zhibing ZHANG. Bioreactor scale-up simulation and experimental study based on mesoscale PBM model [J]. CIESC Journal, 2022, 73(6): 2698-2707. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||