CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 379-383.doi: 10.11949/j.issn.0438-1157.20160565

Previous Articles     Next Articles

Synthesis of SiO2 nanoparticles by chemical precipitation

HU Yanwei, CHENG Gong, LI Haoran, HE Yurong   

  1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
  • Received:2016-04-28 Revised:2016-05-08 Online:2016-08-31 Published:2016-08-31
  • Supported by:

    supported by National Natural Science Foundation of China (51322601), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (51421063), and the Science Creative Foundation for Distinguished Young Scholars in Harbin (2014RFYXJ004).


With excellent physical characteristics such as heat proof, thermal insulation and abrasion resistance, etc., silica nanoparticles have attracted a lot interesting from various industries. Many methods have been proposed to formulate SiO2 nanoparticles, for example, aerosol method, chemical precipitation method, microemulsion method and sol-gel method. Compared with other methods, chemical precipitation uses cheaper materials and is easily to be industrialized. In present work, based on the chemical precipitation method, SiO2 nanoparticles were prepared using sodium silicate (Na2SiO3) as silicon source, ammonium chloride (NH4Cl) as precipitant and cetyl trimethyl ammonium bromide (CTAB) as dispersant. TG-DSC was used to determine the decomposition temperature of CTAB. After the preparation, SiO2 nanoparticles were characterized using Fourier Transform Infrared Spectrometer (FTIR Spectrometer), X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Results show that SiO2 nanoparticles formulated by chemical precipitation were amorphous state with an average diameter of 80 nm.

Key words: chemical precipitation, synthesis, nanoparticles, characterization, size distribution

CLC Number: 

  • TB34
[1] 丁立国. 二氧化硅纳米的制备与应用研究[D]. 哈尔滨:哈尔滨工程大学, 2004. DING L G. Research on preparation and application of nano-SiO2[D]. Harbin:Harbin Engineering University, 2004.
[2] 刘景春, 韩建成. 跨世纪高科技材料纳米SiO2 的应用领域[J]. 化工新型材料, 1998, (7):3-6. LIU J C, HAN J C. Application of high technology nano-SiO2 materials[J]. New Chemical Materials, 1998, (7):3-6.
[3] 柯博, 黄志杰, 左美群, 等. 纳米SiO2在涂料中的应用[J].涂料工业, 1998, (12):29-30. KE B, HUANG Z J, ZUO M Q, et al. Application of SiO2 nanoparticles on coating industry[J]. Paint & Coatings Industry, 1998, (12):29-30.
[4] TANG F Q, LI L L, CHEN D. Mesoporous silica nanoparticles:synthesis, biocompatibility and drug delivery[J]. Advanced Materials, 2012, 24(12):1504-1534.
[5] 曹淑超, 伍林, 易德莲, 等. 纳米二氧化硅的制备工艺及其进展[J]. 化学与生物工程, 2005, 22(9):1-3. CAO S C, WU L, YI D L, et al. Process in preparation of nano-silica[J]. Chemistry & Bioengineering, 2005, 22(9):1-3.
[6] MINGOS D M P, BAGHURST D R, LECTURE T. Applications of microwave dielectric heating effects to synthetic problems in chemistry[J]. Chemical Society Reviews, 1991, 20(1):1-47.
[7] JAL P K, SUDARSHAN M, SAHA A, et al. Synthesis and characterization of nanosilica prepared by precipitation method[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2004, 240(1):173-178.
[8] WANG H, PENG M, ZHENG J, et al. Encapsulation of silica nanoparticles by redox-initiated graft polymerization from the surface of silica nanoparticles[J]. Journal of Colloid and Interface Science, 2008, 326(1):151-157.
[9] RAI C, HAQUE F Z. Synthesis of ultrafine SiO2 nanoparticles through ultrasonication-assisted sol-gel technique[J]. Journal of Advanced Physics, 2015, 4(1):15-18.
[10] GAN L M, ZHANG K, CHEW C H. Preparation of silica nanoparticles from sodium orthosilicate in inverse microemulsions[J]. Colloids and Surfaces A:Physico-chemical and Engineering Aspects, 1996, 110(2):199-206.
[11] SILVA G A. Introduction to nanotechnology and its applications to medicine[J]. Surgical Neurology, 2004, 61(3):216-220.
[12] LEE S G, JANG Y S, PARK S S, et al. Synthesis of fine sodium-free silica powder from sodium silicate using w/o emulsion[J]. Materials Chemistry and Physics, 2006, 100(2):503-506.
[13] 张明明. 纳米球形二氧化硅的制备研究[D]. 南京:南京理工大学, 2008. ZHANG M M. Research on the preparation of nano-SiO2 spherical particle[D]. Nanjing:Nanjing University of Science and Technology, 2008.
[14] 王子忱, 王莉玮, 赵敬哲, 等. 沉淀法合成高比表面积超细SiO2[J]. 无机材料学报, 1997, (3):391-395. WANG Z C, WANG L W, ZHAO J Z, et al. Preparation of ultrafine SiO2 powders with large specific surface area[J]. Journal of Inorganic Materials, 1997, (3):391-395.
[15] 郑典模, 苏学军.化学沉淀法制备纳米SiO2的研究[J]. 南昌大学学报(工科版), 2003, 25(2):39-41. ZHENG D M, SU X J. Study on the preparation of nanometer SiO2 by chemical precipitation[J]. Journal of Nanchang University (Engineering & Technology), 2003, 25(2):39-41.
[16] 郭宇, 吴红梅, 周立岱, 等. 化学沉淀法制备二氧化硅纳米[J]. 辽宁化工, 2005, 34(2):56-57. GUO Y, WU H M, ZHOU L D, et al. Preparation of nano SiO2 by chemical precipitation process[J]. Liaoning Chemical Industry, 2005, 34(2):56-57.
[17] 王晓英, 蔡旭, 洪若瑜, 等. 二氧化硅纳米的制备及应用[J]. 中国粉体技术, 2011, 17(3):63-67. WANG X Y, CAI X, HONG R Y, et al. Preparation and application of silica nanoparticles[J]. China Powder Science and Technology, 2011, 17(3):63-67.
[18] 郭英凯, 赵燕禹, 赵国华, 等. 二氧化硅纳米的制备[J]. 盐业与化工, 2007, 36(4):29-31. GUO Y K, ZHAO Y Y, ZHAO G H, et al. Preparation of nanometer silica[J]. Journal of Salt and Chemical Industry, 2007, 36(4):29-31.
[19] 霍玉秋, 翟玉春. 醇盐水解沉淀法制备二氧化硅纳米粉[J]. 微纳电子技术, 2003, 40(9):26-28. HUO Y Q, ZHAI Y C. Preparation of SiO2 nanoparticles with alkoxide hydrolysis precipitation method[J]. Micro-nanoelectronic Technology, 2003, 40(9):26-28.
[20] 贾宏, 郭锴, 郭奋, 等. 用超重力法制备纳米二氧化硅[J]. 材料研究学报, 2009, 15(1):120-124. JIA H, GUO K, GUO F, et al. Preparation of nanosized SiO2 powder by RPB technology[J]. Chinese Journal of Materials Research, 2009, 15(1):120-124.
[21] 张密林, 丁立国, 景晓燕, 等. 纳米二氧化硅的制备、改性与应用[J]. 化学工程师, 2003, (6):11-14. ZHANG M L, DING L G, JING X Y, et al. Preparation, modification and application of nanoscale SiO2[J]. Chemical Engineer, 2003, (6):11-14.
[22] 韩静香, 佘利娟, 翟立新, 等. 化学沉淀法制备纳米二氧化硅[J]. 硅酸盐通报, 2010, 29(3):681-685. HAN J X, SHE L J, ZHAI L X, et al. Preparation of nanometer SiO2 by chemical precipitaion[J]. Bulletin of the Chinese Ceramic Society, 2010, 39(3):681-685.
[1] Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723.
[2] Feng WANG, Yu CHEN, Hongyan PEI, Dongdong LIU, Jing ZHANG, Lixin ZHANG. Design, synthesis and anti-fungal activity of 1,2,4-oxadiazole derivatives [J]. CIESC Journal, 2023, 74(3): 1390-1398.
[3] Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369.
[4] Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903.
[5] Mengbo ZHANG, Linjin LOU, Yirong FENG, Yuting ZHENG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on synthesis of alkylaluminoxanes [J]. CIESC Journal, 2023, 74(2): 525-534.
[6] Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806.
[7] Guojia YU, Dongyu JIN, Zhiyong ZHOU, Fan ZHANG, Zhongqi REN. Advances in the design, synthesis and application of porous liquids [J]. CIESC Journal, 2023, 74(1): 257-275.
[8] Qiuhua ZHANG, Manlu LIU, Zheng WANG, Yiming ZHANG, Haijia SU. Biosynthesis of vitamin K2 and functional analysis of the biosynthetic enzymes involved in its menadione moiety [J]. CIESC Journal, 2023, 74(1): 342-354.
[9] Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407.
[10] Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364.
[11] Wei ZHANG, Haoyang LI, Chungang XU, Xiaosen LI. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation [J]. CIESC Journal, 2022, 73(9): 3815-3827.
[12] Xiaobing JU, Xuechun LI, Fang SUN. Effect on dithiosalicylic acid derivative on properties of photocuring materials [J]. CIESC Journal, 2022, 73(9): 4187-4193.
[13] Tongpeng LU, Xiaolin PAN, Hongfei WU, Yu LI, Haiyan YU. Effect of organic flocculant on settling performance of iron-bearing minerals and its adsorption mechanism [J]. CIESC Journal, 2022, 73(9): 4122-4132.
[14] Wenhua DAI, Zhong XIN. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2022, 73(8): 3586-3596.
[15] Jingwei ZHANG, Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Advances in frontiers of organic synthesis in microreactor [J]. CIESC Journal, 2022, 73(8): 3472-3482.
Full text



No Suggested Reading articles found!