CIESC Journal ›› 2016, Vol. 67 ›› Issue (12): 4936-4943.DOI: 10.11949/j.issn.0438-1157.20160695
Previous Articles Next Articles
LIU Ran, XIA Guodong, DU Mo
Received:
2016-05-20
Revised:
2016-09-18
Online:
2016-12-05
Published:
2016-12-05
Supported by:
supported by the Natural Science Foundation of Beijing(3142004).
刘冉, 夏国栋, 杜墨
通讯作者:
夏国栋。xgd@bjut.edu.cn
基金资助:
北京市自然科学基金项目(3142004)。
CLC Number:
LIU Ran, XIA Guodong, DU Mo. Characteristics of convective heat transfer in triangular microchannel heat sink using different nanofluids[J]. CIESC Journal, 2016, 67(12): 4936-4943.
刘冉, 夏国栋, 杜墨. 三角形微通道内纳米流体流动与换热特性[J]. 化工学报, 2016, 67(12): 4936-4943.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20160695
[1] | CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticle[J]. ASME International Mechanical Engineering Congress & Exposition, 1995. |
[2] | XIE H, WANG J, XI T, et al. Thermal conductivity enhancement of suspensions containing nanosized alumina particles[J]. Journal of Applied Physics, 2002, 91(7):4568-4572. |
[3] | 江成军, 段志伟, 张振忠, 等. 不同表面活性剂对纳米银粉在乙醇中分散性能的影响[J]. 稀有金属材料与工程, 2007, 36(4):724-727. JIANG C J, DUAN Z W, ZHANG Z Z, et al. The effect of different surfactants on the stability of nanosized silver powder in ethanol[J]. Rare Metal Materials and Engineering, 2007, 36(4):724-727 |
[4] | 莫松平, 陈颖, 李兴. 表面活性剂对二氧化钛纳米流体分散性的影响[J]. 材料导报B:研究篇, 2013, 27(6):43-46. MO S P, CHEN Y, LI X. The effect of surfactants on the stability of TiO2 nanofluids[J]. Materials Review B:Study, 2013, 27(6):43-46. |
[5] | 江宦明, 夏国栋, 刘冉. γ-Al2O3纳米流体热导率与稳定性影响因素分析[J]. 工程热物理学报, 2014, 35(8):1550-1553. JIANG H M, XIA G D, LIU R. Analysis of factors influencing the thermal conductivity and stability of γ-Al2O3 nanofluids[J]. Journal of Engineering Thermophysics, 2014, 35(8):1550-1553. |
[6] | 贾涛. 水基纳米流体的制备及其热物理特性实验研究[D]. 北京:北京建筑大学, 2014. JIA T. Experimental study on the preparation and thermophysical characteristics for water based nanofluids[D]. Beijing:Beijing University of Civil Engineering and Architecture, 2014. |
[7] | 李金凯,赵蔚琳,刘宗明. 低浓度Al2O3-水纳米流体制备及导热性能测试[J]. 硅酸盐通报, 2010, 29(1):204-208. LI J K, ZHAO W L, LIU Z M. The preparation and thermal conductivity test for Al2O3-water nanofluids at low particles concentration[J]. Bulletin of the Chinese Ceramic Society, 2010, 29(1):204-208. |
[8] | 李东东,李金凯,赵蔚琳. SiO2-水纳米流体稳定性及导热性能[J]. 济南大学学报(自然科学版), 2010, 24(3):247-250. LI D D, LI J K, ZHAO W L. The stability and thermal conductivity of SiO2-water nanofluids[J]. Journal of University of Jinan(Science and Technology), 2010, 24(3):247-250. |
[9] | 宋玲利. 铝纳米流体集热工质的制备与性能研究[D]. 广州:广东工业大学, 2011. SONG L L. Study on preparation and characteristics of Al nanofluids set thermal mass[D]. Guangzhou:Guangdong University of Technology, 2011. |
[10] | MURSHED S M S, LEONG K C, YANG C. Enhanced thermal conductivity of TiO2-water based nanofluids[J]. International Journal of Thermal Sciences, 2005, 44(4):367-373. |
[11] | ZHU D S, LI X F, WANG N. Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids[J]. Current Applied Physics, 2009,(9):131-139. |
[12] | 钟勋, 俞小莉,吴俊. 氧化铝有机纳米流体的流动传热基础特性[J]. 化工学报, 2009, 60(1):35-41. ZHONG X, YU X L, WU J. Characteristics of flow and heat transfer of Al2O3 organic nanofluid[J]. CIESC Journal, 2009, 60(1):35-41. |
[13] | SOMMERS A D, YERKES K L. Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid[J]. Journal of Nanoparticle Research, 2010, 12(3):1003-1014. |
[14] | ABU-NADA E. Effects of variable viscosity and thermal conductivity of Al2O3-water nanofluid on heat transfer enhancement in natural convection[J]. International Journal of Heat and Fluid Flow, 2009, 30(4):679-690. |
[15] | SOHEL M R, SAIDUR R. Investigating the heat transfer performance and thermophysical properties of nanofluids in a circular micro-channel[J]. International Communications in Heat and Mass Transfer, 2013,(42):75-81. |
[16] | 王二利, 罗小平. 矩形微槽道内磁纳米流体传热的流阻特性研究[J]. 石油化工设备, 2013, 42(1):1-4. WANG E L, LUO X P. Study on flow resistance characteristics of magnetic nanofluid heat transfer in rectangular microchannel[J]. Petro-Chemical Equipment, 2013, 42(1):1-4. |
[17] | XIA G D, JIANG J, WANG J. Effects of different geometric structures on fluid flow and heat transfer performance in microchannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2015,(80):439-447. |
[18] | 魏珍, 吴慧英, 吴信宇. 水/乙醇混合工质在硅基微通道中的流动与换热[J]. 化工学报, 2008, 59(1):2706-2712. WEI Z, WU H Y, WU X Y. Fluids flow and heat transfer of water/EG mixed working medium in silicon based microchannel[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(1):2706-2712. |
[19] | 吴信宇, 吴慧英, 屈健, 等. 纳米流体在芯片微通道中的流动与换热特性[J]. 化工学报, 2008, 59(9):2181-2187. WU X Y, WU H Y, QU J, et al. Characteristics of fluids flow and heat transfer in microchannel using nanofluids[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(9):2181-2187. |
[20] | 宣益民, 李强. 纳米流体能量传递理论与应用[M]. 北京:科学出版社, 2009:20-21. XUAN Y M, LI Q. The Theory and Application of Nano Fluid Energy Transfer[J]. Beijing:Science Press, 2009:20-21. |
[21] | BRINKMAN H C. The viscosity of concentrated suspensions and solutions[J]. The Journal of Chemical Physics, 1952, 20(4):571-581. |
[22] | LI Y F, XIA G D, MA D D. Characteristics of laminar flow and heat transfer in microchannel heat sink with triangular cavities and rectangular ribs[J]. International Journal of Heat and Mass Transfer, 2016,(98):17-28.γ-Al2O3 nanofluids[J]. Journal of Engineering Thermophysics, 2014, 35(8):1550-1553. |
[6] | 贾涛. 水基纳米流体的制备及其热物理特性实验研究[D]. 北京: 北京建筑大学, 2014. JIA T. Experimental study on the preparation and thermophysical characteristics for water based nanofluids[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2014. |
[7] | 李金凯,赵蔚琳,刘宗明. 低浓度Al2O3-水纳米流体制备及导热性能测试[J]. 硅酸盐通报. 2010, 29(1): 204-208. LI J K, ZHAO W L, LIU Z M. The preparation and thermal conductivity test for Al2O3-water nanofluids at low particles concentration[J]. Bulletion of the Chinese Ceramic Society, 2010, 29(1): 204-208. |
[8] | 李东东,李金凯,赵蔚琳. SiO2-水纳米流体稳定性及导热性能[J]. 济南大学学报(自然科学版), 2010, 24(3): 247-250. LI D D, LI J K, ZHAO W L. The stability and thermal conductivity of SiO2-water nanofluids[J]. Journal of University of Jinan (Science and Technology), 2010, 24(3): 247-250. |
[9] | 宋玲利. 铝纳米流体集热工质的制备与性能研究[D]. 广东: 广东工业大学, 2011 SONG L L. Study on preparation and characteristics of Al nanofluids set thermal mass[D]. Guangdong: Guangdong University of Technology, 2011. |
[10] | MURSHED S M S, LEONG K C, YANG C. Enhanced thermal conductivity of TiO2-water based nanofluids, International Journal of Thermal Sciences, 2005, 44(4): 367-373. |
[11] | ZHU D S, LI X F, WANG N. Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids[J]. Current Applied Physics. 2009, (9):131-139. |
[12] | 钟勋, 俞小莉,吴俊. 氧化铝有机纳米流体的流动传热基础特性[J]. 化工学报, 2009, 60(1):35-41. ZHONG X, YU X L, WU J. Characteristics of flow and heat transfer of Al2O3 organic nanofluid[J]. Journal of Chemical Industry and Engineering, 2009, 60(1):35-41. |
[13] | SOMMERS A D, YERKES K L. Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid[J]. Journal of Nanoparticle Research, 2010, 12(3):1003-1014. |
[14] | ABU-NADA E. Effects of variable viscosity and thermal conductivity of Al2O3-water nanofluid on heat transfer enhancement in natural convection, International Journal of Heat and Fluid Flow, 2009, 30(4):679-690. |
[15] | SOHEL M R, SAIDUR R. Mohd Faizul Mohd Sabri. Investigating the heat transfer performance and thermophysical properties of nanofluids in a circular micro-channel, International Communications in Heat and Mass Transfer, 2013, (42):75-81. |
[16] | 王二利, 罗小平. 矩形微槽道内磁纳米流体传热的流阻特性研究[J]. 石油化工设备, 2013, 42(1):1-4. WANG E L, LUO X P. Study on flow resistance characteristics of magnetic nanofluid heat transfer in rectangular microchannel[J]. Petro-Chemical Equipment, 2013, 42(1):1-4. |
[17] | XIA G D, JIANG J, WANG J. Effects of different geometric structures on fluid flow and heat transfer performance in microchannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2015, (80):439-447. |
[18] | 魏珍, 吴慧英, 吴信宇. 水/乙醇混合工质在硅基微通道中的流动与换热[J]. 化工学报.2008, 59(1):2706-2712. WEI Z, WU H Y, WU X Y. Fluids flow and heat transfer of water/EG mixed working medium in silicon based microchannel[J]. Journal of Chemical Industry and Engineering, 2008, 59(1):2706-2712. |
[19] | 吴信宇, 吴慧英, 屈健, 等. 纳米流体在芯片微通道中的流动与换热特性[J]. 化工学报, 2008, 59(9):2181-2187. WU X Y, WU H Y, QU J, et al. Characteristics of fluids flow and heat transfer in microchannel using nanofluids[J]. Journal of Chemical Industry and Engineering, 2008, 59(9):2181-2187. |
[20] | 宣益民, 李强. 纳米流体能量传递理论与应用[M]. 北京: 科学出版社. 2009:20-21. XUAN Y M, LI Q. The theory and application of nano fluid energy transfer[J]. Beijing: Science Press, 2009:20-21. |
[21] | BRINKMAN H C. The Viscosity of Concentrated Suspensions and Solutions[J]. The Journal of Chemical Physics, 1952, 20(4):571-581. |
[22] | Li Y F, XIA G D, MA D D. Characteristics of laminar flow and heat transfer in microchannel heat sink with triangular cavities and rectangular ribs[J]. International Journal of Heat and Mass Transfer, 2016, (98):17-28. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[7] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[11] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[12] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[13] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[14] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[15] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||