[1] |
SCHIERMEIER Q. The parched planet:water on tap[J]. Nature, 2014, 510:326-328.
|
[2] |
SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 442:301-310.
|
[3] |
BAJPAYEE A, LUO T, MUTO A, et al. Very low temperature membrane-free desalination by directional solvent extraction[J]. Energy Environment Science, 2011, 4:1672-1675.
|
[4] |
LI C N, GOSWAMI Y, STEFANAKOS E. Solar assisted sea water desalination:a review[J]. Renew. Sust. Energy Rev., 2013, 19:136-163.
|
[5] |
郑宏飞. 太阳能海水淡化原理与技术[M]. 北京:化学工业出版社, 2012:116-153. ZHENG H F. Solar Desalinization Principle and Technology[M]. Beijing:Chemical Industry Press, 2012:116-153.
|
[6] |
KUMAR K V, BAI R K. Performance study on solar still with enhanced condensation[J]. Desalination, 2008, 230:51-61.
|
[7] |
DAYEM A M A, FATOUH M. Experimental and numerical investigation of humidification dehumidification solar water desalination systems[J]. Desalination, 2009, 247:594-609.
|
[8] |
AL-HALLAJ S, PAREKH S, FARID M M, et al. Solar desalination with humidification-dehumidification cycle:review of economics[J]. Desalination, 2006, 195:169-186.
|
[9] |
PALENZUELA P, HASSAN A S, ZARAGOZA G. Steady state model for multi-effect distillation case study:Plataforma Solar de Almería MED pilot plant[J]. Desalination, 2014, 337:31-42.
|
[10] |
RAJASEENIVASANA T, MURUGAVEL K K. A review of different methods to enhance the productivity of the multi-effect solar still[J]. Renewable and Sustainable Energy Reviews, 2013, 17:248-259.
|
[11] |
TIWARI A K, TIWARI G N. Effect of water depths on heat and mass transfer in a passive solar still:in summer climatic condition[J]. Desalination, 2006, 195:78-94.
|
[12] |
CHEN Z Q, ZHENG H F. Steady-state experimental studies on a multi-effect thermal regeneration solar desalination unit with horizontal tube falling film evaporation[J]. Desalination, 2007, 10:59-70.
|
[13] |
TIWARI G N, KUMAR A. Nocturnal water production by tubular solar stills using waste heat to preheat brine[J]. Desalination, 1988, 69:309-318.
|
[14] |
KUMAR A, ANAND J D. Modelling and performance of a tubular multiwick solar still[J]. Energy, 1992, 17:1067-1071.
|
[15] |
AHSAN A, FUKUHARA T. Condensation mass transfer in unsaturated humid and inside tubular solar still[J]. Annual Journal of Hydraulic Engineering, 2009, 53:97-102.
|
[16] |
AHSAN A, FUKUHARA T. Mass and heat transfer model of tubular solar still[J]. Solar Energy, 2010, 84(7):1147-1156.
|
[17] |
AHSAN A, ISLAM K M S, FUKUHARA T, et al. Experimental study on evaporation, condensation and production of a new tubular solar still[J]. Desalination, 2010, 260:172-179.
|
[18] |
AHSAN A, FUKUHARA T. Evaporative mass transfer in tubular solar still[J]. Journal of Hydroscience and Hydraulic Engineering, 2008, 26:15-25.
|
[19] |
RAHBAR N, ESFAHANI J A, FOTOUHI-BAFGHI E. Estimation of convective heat transfer coefficient and water-productivity in a tubular solar still-CFD simulation and theoretical analysis[J]. Solar Energy, 2015, 113:313-323.
|
[20] |
ARUNKUMAR T, JAYAPRAKASH R, AHSAN A, et al. Effect of water and air flow on concentric tubular solar water desalting system[J]. Applied Energy, 2013, 103:109-115.
|
[21] |
ARUNKUMAR T, VELRAJ R, DENKENBERGER D, et al. Effect of heat removal on tubular solar desalting system[J]. Desalination, 2016, 379:24-33.
|
[22] |
ZHENG H F, CHANG Z H, CHEN Z L, et al. Experimental investigation and performance analysis on a group of multi-effect tubular solar desalination devices[J]. Desalination, 2013, 311:62-68.
|
[23] |
KAZUO M, HIROSHI T, MASAYUKI I, et al. Experimental and numerical analysis of a tube-type networked solar still for desert technology[J]. Desalination, 2006, 190:137-146.
|
[24] |
AHMED M I, HRAIRI M, ISMAIL A F. On the characteristics of multistage evacuated solar distillation[J]. Renewable Energy, 2009, 34:1471-1478.
|
[25] |
JURBRAN B A, AHMED M I, ISMAIL A F, et al. Numerical modelling of a multi-stage solar still[J]. Energy Convers. Manag., 2000, 41:1107-1121.
|
[26] |
Al-HUSSAINI H, SMITH I K. Enhancing of solar still productivity using vacuum technology[J]. Energy Conversion and Management, 1995, 36:1047-1051.
|
[27] |
刘捷, 武春瑞, 吕晓龙. 减压膜蒸馏传热传质过程[J].化工学报, 2011, 62(4):908-915. LIU J, WU C R, LÜ X L. Heat and mass transfer in vacuum membrane distillation[J]. CIESC Journal, 2011, 62(4):908-915.
|
[28] |
李卜义, 王建友, 王济虎, 等. 新型中空纤维空气隙式膜蒸馏用于海水淡化[J]. 化工学报, 2015, 66(1):149-156. LI B Y, WANG J Y, WANG J H, et al. New membrane distillation module based on hollow fiber AGMD desalination[J]. CIESC Journal, 2015, 66(1):149-156.
|
[29] |
李卜义, 王建友, 王济虎, 等. 中空纤维空气隙式膜蒸馏海水淡化过程的性能模拟与优化[J]. 化工学报, 2015, 66(2):597-604. LI B Y, WANG J Y, WANG J H, et al. Modeling and optimization of hollow fiber air gap membrane distillation for seawater desalination[J]. CIESC Journal, 2015, 66(2):597-604.
|
[30] |
ZHENG H F, ZHANG X Y, ZHANG J, et al. A group of improved heat and mass transfer correlations in solar stills[J]. Energy Convers. Manag., 2002, 43:2469-2478.
|
[31] |
谢果, 熊建银, 郑宏飞. 竖壁自储水式蒸馏空腔的自然对流换热特性[J]. 化工学报, 2012, 63(8):2405-2410. XIE G, XIONG J Y, ZHENG H F. Natural convection heat and mass transfer in vertical plate cavity with film evaporation and raw water reservoir[J]. CIESC Journal, 2012, 63(8):2405-2410.
|