[1] |
?KIZLER B, PEKER S M. Effect of the seed layer thickness on the stability of ZnO nanorod arrays[J]. Thin Solid Films, 2014, 558:149-159.
|
[2] |
TRIPATHY N, AHMAD R, KUK H, et al. Mesoporous ZnO nanoclusters as an ultra-active photocatalyst[J]. Ceramics International, 2016, 42(8):9519-9526.
|
[3] |
RELI M, EDELMANNOVÁ M, ŠIHOR M, et al. Photocatalytic H2 generation from aqueous ammonia solution using ZnO photocatalysts prepared by different methods[J]. International Journal of Hydrogen Energy, 2015, 40(27):8530-8538.
|
[4] |
刘文魁, 周伟昌, 张清林, 等. 分级介孔结构组成的ZnO微球及光催化性能[J]. 无机材料学报, 2013, 28(8):875-879. LIU W K, ZHOU W C, ZHANG Q L, et al. Preparation and photocatalytic property of the hierarchical mesoporous[J]. Journal of Inorganic Materials, 2013, 28(8):875-879.
|
[5] |
MAY J W, MA J, BADAEVA E, et al. Effect of excited-state structural relaxation on midgap excitations in Co2+-doped ZnO quantum dots[J]. The Journal of Physical Chemistry C, 2014, 118(24):13152-13156.
|
[6] |
KUMAR S, SONG T K, GAUTAM S, et al. Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles[J]. Materials Research Bulletin, 2015, 66:76-82.
|
[7] |
RAZA W, HAQUE M M, MUNEER M. Synthesis of visible light driven ZnO:characterization and photocatalytic performance[J]. Applied Surface Science, 2014, 322:215-224.
|
[8] |
KANEVA N, BOJINOVA A, PAPAZOVA K, et al. Photocatalytic purification of dye contaminated sea water by lanthanide (La3+, Ce3+, Eu3+) modified ZnO[J]. Catalysis Today, 2015, 252:113-119.
|
[9] |
KUMAR R, UMAR A, KUMAR G, et al. Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye[J]. Ceramics International, 2015, 41(6):7773-7782.
|
[10] |
SHUKLA S, AGORKU E, MITTAL H, et al. Synthesis, characterization and photoluminescence properties of Ce3+-doped ZnO-nanophosphors[J]. Chemical Papers, 2014, 68(2):217-222.
|
[11] |
ISMAIL I M I, ASLAM M, ALMEELBI T, et al. Ce3+ impregnated ZnO:a highly efficient photocatalyst for sunlight mediated mineralization[J]. RSC Advances, 2014, 4(31):16043-16046.
|
[12] |
SHARMA D K, SHARMA K K, KUMAR V, et al. Effect of Ce doping on the structural, optical and magnetic properties of ZnO nanoparticles[J]. Journal of Materials Science:Materials in Electronics, 2016, 27(10):10330-10335.
|
[13] |
SALEH R, DJAJA N F. UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles[J]. Superlattices and Microstructures, 2014, 74:217-233.
|
[14] |
WANG Y J, ZHAO X R, DUAN L B, et al. Structure, luminescence and photocatalytic activity of Mg-doped ZnO nanoparticles prepared by auto combustion method[J]. Materials Science in Semiconductor Processing, 2015, 29:372-379.
|
[15] |
丁艳, 马歌, 李良超, 等. M2+(M=Cu、Cd、Ag、Fe)掺杂氧化锌纳米粉晶的抗菌性能[J]. 无机化学学报, 2014, 30(2):293-302. DING Y, MA G, LI L C, et al. Antibacterial activities of doped ZnO nano-powder with M2+(M=Cu, Cd, Ag and Fe)[J]. Chinese Journal of Inorganic Chemistry, 2014, 30(2):293-302.
|
[16] |
YI S S, CUI J B, Li S, et al. Enhanced visible-light photocatalytic activity of Fe/ZnO for rhodamine B degradation and its photogenerated charge transfer properties[J]. Applied Surface Science, 2014, 319:230-236.
|
[17] |
GOKTAS A, MUTLU I H, YAMADA Y. Influence of Fe-doping on the structural, optical, and magnetic properties of ZnO thin films prepared by sol-gel method[J]. Superlattices and Microstructures, 2013, 57:139-149.
|
[18] |
LEE H U, LEE G, PARK J C, et al. Efficient visible-light responsive TiO2 nanoparticles incorporated magnetic carbon photocatalysts[J]. Chemical Engineering Journal, 2014, 240:91-98.
|
[19] |
AKIR S, BARRAS A, COFFINIER Y, et al. Eco-friendly synthesis of ZnO nanoparticles with different morphologies and their visible light photocatalytic performance for the degradation of Rhodamine B[J]. Ceramics International, 2016, 42(8):10259-10265.
|
[20] |
BARZGARI Z, GHAZIZADEH A, ASKARI S Z. Preparation of Mn-doped ZnO nanostructured for photocatalytic degradation of Orange G under solar light[J]. Research on Chemical Intermediates, 2016, 42(5):4303-4315.
|
[21] |
BAKHSHAYESH A M, BAKHSHAYESH N. Enhanced performance of dye-sensitized solar cells aided by Sr, Cr co-doped TiO2 xerogel films made of uniform spheres[J]. Journal of Colloid and Interface Science, 2015, 460:18-28.
|
[22] |
LI J Z, GONG Y M, XU J, et al. Preparation and nonlinear optical properties of Au nanoparticles doped TiO2 thin films[J]. Journal of Sol-Gel Science and Technology, 2013, 67(3):527-533.
|
[23] |
XIAO S S, ZHAO L, LIAN J S. Enhanced photocatalytic performance of supported Fe doped ZnO nanorod arrays prepared by wet chemical method[J]. Catalysis Letters, 2014, 144(2):347-354.
|
[24] |
WANG B W, SUN Q M, LIU S H, et al. Synergetic catalysis of CuO and graphene additives on TiO2 for photocatalytic water splitting[J]. International Journal of Hydrogen Energy, 2013, 38(18):7232-7240.
|
[25] |
WANG W, LI X, SUN Z C, et al. Influences of calcination and reduction methods on the preparation of Ni2P/SiO2 and its hydrodenitrogenation performance[J]. Applied Catalysis A:General, 2016, 509:45-51.
|
[26] |
BADARI C A, LÓNYI F, DROTÁR E, et al. A study of the hydrodenitrogenation of propylamine over supported nickel phosphide catalysts using amorphous and nanostructured silica supports[J]. Applied Catalysis B:Environmental, 2015, 164:48-60.
|
[27] |
MARTÍNEZ J, ANCHEYTA J. Modeling the kinetics of parallel thermal and catalytic hydrotreating of heavy oil[J]. Fuel, 2014, 138:27-36.
|
[28] |
LI J Z, ZHONG J B, HE X Y, et al. Enhanced photocatalytic activity of Fe2O3 decorated Bi2O3[J]. Applied Surface Science, 2013, 284:527-532.
|
[29] |
ZHAO X H, LI M, LOU X D. Sol-gel assisted hydrothermal synthesis of ZnO microstructures:morphology control and photocatalytic activity[J]. Advanced Powder Technology, 2014, 25(1):372-378.
|
[30] |
SILVA I M P, BYZYNSKI G, RIBEIRO C, et al. Different dye degradation mechanisms for ZnO and ZnO doped with N (ZnO:N)[J]. Journal of Molecular Catalysis A:Chemical, 2016, 417:89-100.
|