[1] |
JIA Q L, ZHANG Y W. Quality-related fault detection approach based on dynamic kernel partial least squares[J]. Chemical Engineering Research and Design, 2016, 106:242-252.
|
[2] |
WANG T, WU H, NI M, et al. An adaptive confidence limit for periodic non-steady conditions fault detection[J]. Mechanical Systems and Signal Processing, 2016, 72:328-345.
|
[3] |
SONG B, TAN S, SHI H. Process monitoring via enhanced neighborhood preserving embedding[J]. Control Engineering Practice, 2016, 50:48-56.
|
[4] |
LI N, YANG W, YANG Y. Spatial-statistical local approach for improved manifold-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2015, 54(34):8509-8519.
|
[5] |
LI W, YUE H H, VALLE C S, et al. Recursive PCA for adaptive process monitoring[J]. Journal of Process Control, 2000, 10(5):471-486.
|
[6] |
童楚东, 史旭华. 基于互信息的PCA方法及其在过程监测中的应用[J]. 化工学报, 2015, 66(10):4101-4106. TONG C D, SHI X H. Mutual information based PCA algorithm with application in process monitoring[J]. CIESC Journal, 2015, 66(10):4101-4106.
|
[7] |
HYVARINEN A, OJA E. Independent component analysis:algorithms and applications[J]. Neural Networks, 2000, 13(4):411-430.
|
[8] |
ZHANG Y W, ZHANG Y. Fault detection of non-Gaussian processes based on modified independent component analysis[J]. Chemical Engineering Science, 2010, 65:4630-4639.
|
[9] |
WANG B, JIANG Q C, YAN X F. Fault detection and identification using a Kullback-Leibler divergence based multi-block principal component analysis and bayesian inference[J]. Korean Journal of Chemical Engineering, 2014, 31(6):930-943.
|
[10] |
MACGREGOR J F, JAECKLE C, KIPARISSIDES C, et al. Process monitoring and diagnosis by multiblock PLS methods[J]. AIChE J., 1994, 40:826-838.
|
[11] |
GE Z Q, SONG Z H. Two-level multiblock statistical monitoring for plant-wide processes[J]. Korean J. Chem. Eng., 2009, 26:1467-1475.
|
[12] |
WESTERHUIS J A, KOURTI T, MACGREGOR J F. Analysis of multiblock and hierarchical PCA and PLS models[J]. Journal of Chemometrics, 1998, 12(5):301-321.
|
[13] |
CHERRY G A, QIN S J. Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis[J]. IEEE Transactions on semiconductor manufacturing, 2006, 19(2):159-172.
|
[14] |
GE Z Q, SONG Z H. Distributed PCA model for plant-wide process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(5):1947-1957.
|
[15] |
衷路生, 何东, 龚锦红, 等. 基于分布式ICA-PCA模型的工业过程故障监测[J]. 化工学报, 2015, 66(11):4546-4554. ZHONG L S, HE D, GONG J H, et al. Fault monitoring of industrial process based on distributed ICA-PCA model[J]. CIESC Journal,2015, 66(11):4546-4554.
|
[16] |
JIANG Q C, WANG B, YAN X F. Multiblock independent component analysis integrated with Hellinger distance and Bayesian inference for non-Gaussian plant-wide process monitoring[J]. Industrial & Engineering Chemistry Research, 2015, 54(9):2497-2508.
|
[17] |
JIANG Q C, YAN X F. Plant-wide process monitoring based on mutual information multiblock principal component analysis[J]. ISA Transactions, 2014, 53(5):1516-1527.
|
[18] |
WANG B, YAN X F, JIANG Q C, et al. Generalized Dice's coefficient based multi-block principal component analysis with Bayesian inference for plant-wide process monitoring[J]. Journal of Chemometrics, 2015, 29(3):165-178.
|
[19] |
WANG B, YAN X F, JIANG Q C. Independent component analysis model utilizing de-mixing information for improved non-Gaussian process monitoring[J]. Computers & Industrial Engineering, 2016, 94:188-200.
|
[20] |
HUANG J, YAN X F. Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 148:115-127.
|
[21] |
钟丽丽. 基于动态主元分析的故障诊断研究[D]. 青岛:青岛科技大学, 2013. ZHONG L L. Research on fault diagnosis of dynamic principle component analysis[D]. Qingdao:Qingdao University of Science and Technology, 2013.
|
[22] |
ZHANG Y, LIU Y, JI Z. Vector similarity measurement method[J]. Technical Acoustics, 2009, 4(5):532-536.
|
[23] |
张子羿, 胡益, 侍洪波. 一种基于聚类方法的多阶段间歇过程监控方法[J]. 化工学报, 2013, 64(12):4522-4528. ZHANG Z Y, HU Y,SHI H B.Multi-stage batch process monitoring based on a clustering method[J]. CIESC Journal, 2013, 64(12):4522-4528.
|
[24] |
江伟, 王昕, 王振雷. 基于LTSA和MICA与PCA联合指标的过程监控方法及应用[J]. 化工学报, 2015, 66(12):4895-4903. JIANG W, WANG X, WANG Z L. LTSA and combined index based MICA and PCA process monitoring and application[J]. CIESC Journal, 2015:66(12):4895-4903.
|
[25] |
LI X, YANG Y, ZHANG W. Statistical process monitoring via generalized non-negative matrix projection[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 121:15-25.
|
[26] |
杨正永, 王昕, 王振雷. 基于LTSA和联合指标的非高斯过程监控方法及应用[J]. 化工学报, 2014, 66(4):1370-1377. YANG Z Y,WANG X,WANG Z L. LTSA and combined index based non-Gaussian process monitoring and application[J].CIESC Journal, 2014:66(4):1370-1379.
|
[27] |
YUE H H, QIN S J. Reconstruction-based fault identification using a combined index[J]. Industrial and Engineering Chemistry Research, 2001, 40(20):4403-4414.
|
[28] |
XIE L, LI Z, ZENG J, et al. Block adaptive kernel principal component analysis for nonlinear process monitoring[J]. AIChE Journal, 2016, 62(12):4334-4345.
|
[29] |
CHIANG L H, RUSSELL E L, BRAATZ R D. Fault Detection and Diagnosis in Industrial Systems[M]. Berlin:Springer, 2001.
|
[30] |
JIANG Q C, YAN X F. Probabilistic weighted NPE-SVDD for chemical process monitoring[J]. Control Engineering Practice, 2014, 28:74-89.
|