CIESC Journal ›› 2016, Vol. 67 ›› Issue (S2): 231-244.DOI: 10.11949/j.issn.0438-1157.20161354
Previous Articles Next Articles
LING Hui, ZHENG Cheng, MAO Taoyan, WEI Yuan, LIU Ying
Received:
2016-09-28
Revised:
2016-10-17
Online:
2016-12-30
Published:
2016-12-30
Supported by:
supported by the National Natural Science Foundation of China (21676061).
凌慧, 郑成, 毛桃嫣, 魏渊, 刘颖
通讯作者:
郑成
基金资助:
国家自然科学基金项目(21676061)。
CLC Number:
LING Hui, ZHENG Cheng, MAO Taoyan, WEI Yuan, LIU Ying. Optimization of microwave-assisted synthesis of medium-chain triacylglycerols using response surface methodology[J]. CIESC Journal, 2016, 67(S2): 231-244.
凌慧, 郑成, 毛桃嫣, 魏渊, 刘颖. 响应面法优化微波辅助合成中碳链甘油三酯工艺[J]. 化工学报, 2016, 67(S2): 231-244.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20161354
[1] | ROYNETTE C E, RUDKOWSKA I, NAKHASI D K, et al. Structured medium and long chain triacylglycerols show short-term increases in fat oxidation, but no changes in adiposity in men[J]. Nutrition, Metabolism, and Cardiovascular Diseases, 2008, 18(4): 298-305. |
[2] | SEATON T B, WELLE S L, WARENKO M K, et al. Thermic effect of medium-chain and long-chain triacylglycerols in man[J]. The American Journal of Clinical Nutrition, 1986, 44(5): 630-634. |
[3] | STEIN J.Chemically defined structured lipids: current status and future directions in gastrointestinal diseases[J]. International Journal of Colorectal Disease, 1999, 14(2): 79-85. |
[4] | ST-ONGE M P, BOURQUE C, JONES P, et al.Medium-versus long-chain triacylglycerols for 27 days increases fat oxidation and energy expenditure without resulting in changes in body composition in overweight women[J]. International Journal of Obesity, 2003, 27(1): 95-102. |
[5] | ST-ONGE M P, ROSS R, PARSONS W D, et al.Medium-chain triacylglycerols increase energy expenditure and decrease adiposity in overweight men[J]. Obesity Research, 2003, 11(3): 95-402. |
[6] | TSUJI H, KASAI M, TAKEUCHI H, et al.Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind, controlled trial in healthy men and women[J]. The Journal of Nutrition, 2001, 131(11): 2853-2859. |
[7] | WHITE M D, PAPAMANDJARIS A A, JONES P J. Enhanced postprandial energy expenditure with medium-chain fatty acid feeding is attenuated after 14 d in premenopausal women[J]. The American Journal of Clinical Nutrition, 1999, 69(5): 883-892. |
[8] | SWIFT L L, HILL J O, PETERS J C, et al.Plasma lipids and lipoproteins during 6 d of maintenance feeding with long-chain, medium-chain, and mixed-chain triacylglycerols[J]. The American Journal of Clinical Nutrition, 1992, 56(5): 881-887. |
[9] | VAN WYMELBEKE V, LOUIS-SYLVESTRE J, FANTINO M. Substrate oxidation and control of food intake in men after a fat-substitute meal compared with meals supplemented with an isoenergetic load of carbohydrate, long-chain triacylglycerols, or medium-chain triacylglycerols[J]. The American Journal of Clinical Nutrition, 2001, 74(5): 620-650. |
[10] | DULLOO A, FATHI M, MENSI N, et al.Twenty-four-hour energy expenditure and urinary catecholamines of humans consuming low-to-moderate amounts of medium-chain triacylglycerols: a dose-response study in a human respiratory chamber[J]. European Journal of Clinical Nutrition, 1996, 50(3): 152-160. |
[11] | BACH A C, INGENBLEEK Y, FREY A.The usefulness of dietary medium-chain triacylglycerols in body weight control: fact or fancy?[J]. Journal of Lipid Research, 1996, 37(4): 708-726. |
[12] | SHINOHARA H, OGAWA A, KASAI M, et al.Effect of randomly interesterified triacylglycerols containing medium-and long-chain fatty acids on energy expenditure and hepatic fatty acid metabolism in rats[J]. Bioscience, Biotechnology and Biochemistry, 2005, 69(10): 1811-1819. |
[13] | TRAUL K A, DRIEDGER A, INGLE D L, et al.Review of the toxicologic properties of medium-chain triacylglycerols[J]. Food and Chemical Toxicology, 2000, 38(1):79-98. |
[14] | ISMAIL Z, NADARAJAN R, KASSIM A, et al.Selection of polymorphic structure in dihydroxystearic acid/octyl dihydroxystearate/RBD palm kernel olein & medium chain triacylglycerols in cosmetic and personal care formulation[J]. Journal of Dispersion Science and Technology, 2008, 29(2): 261-266. |
[15] | FELTES M M C, DE OLIVEIRA D, BLOCK J M, et al. The production, benefits, and applications of monoacylglycerols and diacylglycerols of nutritional interest[J]. Food and Bioprocess Technology, 2013, 6(1): 17-35. |
[16] | FERNANDES J L N, SOUZA R O M A, DE VASCONCELLOS AZEREDO R B.13C NMR quantification of mono and diacylglycerols obtained through the solvent free lipase-catalyzed esterification of saturated fatty acids[J]. Magnetic Resonance in Chemistry, 2012,50(6): 424-432. |
[17] | SINGH A K, MUKHOPADHYAY M.Optimization of lipase-catalyzed glycerolysis for mono and diglyceride production using response surface methodology[J]. Arabian Journal for Science and Engineering, 2003, 39(4): 2463-2474. |
[18] | NOSAKA N, MAKI H, SUZUKI Y, et al.Effects of margarine containing medium-chain triacyiglycerols on body fat reduction in humans[J]. Journal of Atherosclerosis and Thrombosis, 2003, 10(5): 290-298. |
[19] | KELLER U, TURKALJ I, LAAGER R, et al.Effects of medium-and long-chain fatty acids on whole body leucine and glucose kinetics in man[J]. Metabolism, 2002, 51(6): 754-760. |
[20] | MATSUO T, MATSUO M, KASAI M, et al.Effects of a liquid diet supplement containing structured medium-and long-chain triacylglycerols on body fat accumulation in healthy young subjects[J]. Asia Pacific Journal of Clinical Nutrition, 2001, 10(1): 46-50. |
[21] | HUANG K H, AKOH C C.Optimization and scale-up of enzymatic synthesis of structured lipids using RSM[J]. Journal of Food Science, 1996, 61(1): 137-141. |
[22] | KOH S P, TAN C P, LAI O M, et al.Enzymatic synthesis of medium-and long-chain triacylglycerols (MLCT): optimization of process parameters using response surface methodology[J]. Food and Bioprocess Technology, 2010, 3(2): 288-299. |
[23] | ARIFIN N, SOO-PENG K, LONG K, et al.Modeling and optimization of lipozyme RM IM-catalyzed esterification of medium-and long-chain triacyglycerols (MLCT) using response surface methodology[J]. Food and Bioprocess Technology, 2012, 5(1): 216-225. |
[24] | LI X Z, ELI W, LI G.Solvent-free synthesis of benzoic esters and benzyl esters in novel Brønsted acidic ionic liquids under microwave irradiation[J]. Catalysis Communications, 2008, 9(13): 2264-2272. |
[25] | KAPPE C O.Controlled microwave heating in modern organic synthesis[J]. Angewandte Chemie International Edition, 2004, 43(46): 6250-6284. |
[26] | LOUPY A, PETIT A, RAMDANI M, et al.The synthesis of esters under microwave irradiation using dry-media conditions[J]. Canadian Journal of Chemical Engineering, 1993, 71(1): 90-95. |
[27] | ARFAN A, BAZUREAU J P.Efficient combination of recyclable task specific ionic liquid and microwave dielectric heating for the synthesis of lipophilic esters[J]. Organic Process Research & Development, 2005, 9(6): 743-748. |
[28] | MAZZOCCHIA C, MODICA G, KADDOURI A, et al. Fatty acid methyl esters synthesis from triacylglycerols over heterogeneous catalysts in the presence of microwaves[J]. Comptes Rendus Chimie, 2004, 7(6/7): 601-605. |
[29] | SHINDE S D, YADAV G D.Process intensification of immobilized lipase catalysis by microwave irradiation in the synthesis of 4-chloro-2-methylphenoxyacetic acid (MCPA) esters[J]. Biochemical Engineering Journal, 2014, 90(15): 96-102. |
[30] | SINGH L, ISHAR M P S, ELANGO M, et al.Synthesis of unsymmetrical substituted 1,4-dihydropyridines through thermal and microwave assisted[4+2] cycloadditions of 1-azadienes and allenic esters[J]. European Journal of Organic Chemistry, 2008, 73(6): 2224-2233. |
[31] | PERREUX L, LOUPY A.A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations[J]. Tetrahedron, 2001, 57(45): 9199-9223. |
[32] | DE LA HOZ A, DIAZ-ORTIZ A, MORENO A.Microwaves in organic synthesis.Thermal and non-thermal microwave effects[J]. Chemical Society Reviews, 2005, 34(2): 164-178. |
[33] | BEZERRA M A, SANTELLI R E, OLIVEIRA E P, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry[J]. Talanta, 2008, 76(5): 965-977. |
[34] | BAS D, BOYACI I H.Modeling and optimization (Ⅰ): Usability of response surface methodology[J]. Journal of Food Engineering, 2007, 78(3): 836-845. |
[35] | NETA N S, PERES A M, TEIXEIRA J A, et al. Maximization of fructose esters synthesis by response surface methodology[J]. New Biotechnology, 2011, 28(4): 349-355. |
[36] | HA S H, VAN ANH T, KOO Y M.Optimization of lipase-catalyzed synthesis of caffeic acid phenethyl ester in ionic liquids by response surface methodology[J]. Bioprocess and Biosystems Engineering, 2013, 36(6): 799-807. |
[37] | GARCIA T, SANCHEZ N, MARTINEZ M, et al. Enzymatic synthesis of fatty esters(Ⅱ):Optimization studies[J]. Enzyme and Microbial Technology, 1999, 25(7): 591-597. |
[38] | MAT RADZI S, BASRI M, BAKAR SALLEH A, et al. High performance enzymatic synthesis of oleyl oleate using immobilised lipase from Candida antartica[J]. Electronic Journal of Biotechnology, 2005, 8(3): 291-298. |
[39] | HOYDONCKX H E, DE VOS D E, CHAVAN S A, et al. Esterification and transesterification of renewable chemicals[J]. Topics in Catalysis, 2004, 27(1): 83-96. |
[40] | KAPUSNIAK J, SIEMION P.Thermal reactions of starch with long-chain unsaturated fatty acids(Ⅱ): Linoleic acid[J]. Journal of Food Engineering, 2007, 78(1): 323-332. |
[41] | KOROSKENYI B, MCCARTHY S P.Microwave-assisted solvent-free or aqueous-based synthesis of biodegradable polymers[J]. Journal of Polymers and the Environment, 2002, 10(3): 93-104. |
[42] | AMIN N A S, ANGGORO D D.Optimization of direct conversion of methane to liquid fuels over Cu loaded W/ZSM-5 catalyst[J]. Fuel, 2004, 83(4/5): 487-494. |
[43] | 肖武, 李明月, 阮雪华, 等.响应面法优化一水硫酸氢钠流化催化精馏生产乙酸乙酯工艺条件[J]. 化工学报, 2014, 65(11): 4465-4471. XIAO W, LI M Y, YUAN X H, et al.Optimization of ethyl acetate process conditions for sodium bisulfate fluidized catalytic distillation using response surface methodology[J]. CIESC Journal, 2014, 65(11): 4465-4471. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[3] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[4] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[5] | Xiqiang ZHAO, Jian ZHANG, Shuang SUN, Wenlong WANG, Yanpeng MAO, Jing SUN, Jinglong LIU, Zhanlong SONG. Study on the performance of biochar modified microspheres to remove inorganic phosphorus from chemical wastewater [J]. CIESC Journal, 2022, 73(5): 2158-2173. |
[6] | Xuan LIU, Yinjiao SU, Yang TENG, Kai ZHANG, Pengcheng WANG, Lifeng LI, Zhen LI. Selenium transformation in ultra-low-emission coal-fired power units and its enrichment characteristics in fly ash [J]. CIESC Journal, 2022, 73(2): 923-932. |
[7] | Ting CHEN, Zehao HU, Zhe QIN, Yuanhong CHEN, Yanqiao XU, Jian LIN, Zhixiang XIE. Microwave synthesis of AgInS2 quantum dots in organic solvent and application for white light-emitting diodes [J]. CIESC Journal, 2022, 73(11): 5167-5176. |
[8] | Kun QIN, Zhanghong WANG, Huiyan ZHANG. Evolution of surface functional groups in the pyrolysis of lignin with the introduction of polyethylene and transition metals [J]. CIESC Journal, 2022, 73(11): 5201-5210. |
[9] | Guanyu WANG, Lingjun ZHU, Jinsong ZHOU, Shurong WANG. Study on pyrolysis characteristics of paper mill solid waste based on synergistic effects of its components [J]. CIESC Journal, 2022, 73(1): 393-401. |
[10] | LI Tengfei, MIAO Yun, YANG Liu, WANG Longyao, ZHU Huacheng. Microwave enhanced ion exchange technology of Y molecular sieve [J]. CIESC Journal, 2021, 72(S1): 406-412. |
[11] | ZHANG Yashuang, LI Hong, CONG Haifeng, HAN Hongming, LI Xingang, GAO Xin. Numerical simulation of microwave-enhanced spiral liquid-bridge falling film evaporator [J]. CIESC Journal, 2021, 72(S1): 227-235. |
[12] | ZHAO Haifeng, LI Hong, LI Xingang, GAO Xin. Numerical simulation of microwave distillation reactor with multi-physical field coupling: heating and boiling processes [J]. CIESC Journal, 2021, 72(S1): 266-277. |
[13] | SUN Jing, DONG Yilin, LI Faqi, LI Wenxiang, MA Xiaoling, WANG Wenlong. Study on adsorption and catalytic oxidation characteristics of toluene on Co3O4 modified USY molecular sieve [J]. CIESC Journal, 2021, 72(6): 3306-3315. |
[14] | YE Zhiping, ZHOU Danfei, LIU Zifeng, ZHOU Qingqing, WANG Jiade. Electro-oxidation information of p-toluene sulfonic acid on Ti/PbO2 electrode [J]. CIESC Journal, 2021, 72(5): 2810-2816. |
[15] | ZHANG Qinyi, YANG Xiaohong, DENG Hongling, HU Junhu, TIAN Rui. Study on optimization of thermal-photovoltaic membrane distillation system based on response surface methodology [J]. CIESC Journal, 2021, 72(4): 2156-2166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||