CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 2156-2166.DOI: 10.11949/0438-1157.20201022

• Separation engineering • Previous Articles     Next Articles

Study on optimization of thermal-photovoltaic membrane distillation system based on response surface methodology

ZHANG Qinyi1(),YANG Xiaohong1,2(),DENG Hongling1,HU Junhu1,TIAN Rui1,3   

  1. 1.School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, China
    2.Key Laboratory of Wind and Solar Energy Utilization Technology, Ministry of Education, Hohhot 010051, Inner Mongolia, China
    3.Inner Mongolia Key Laboratory of Renewable Energy, Hohhot 010051, Inner Mongolia, China
  • Received:2020-07-27 Revised:2020-10-28 Online:2021-04-05 Published:2021-04-05
  • Contact: YANG Xiaohong

基于响应面法光热-光电膜蒸馏系统优化研究

张秦意1(),杨晓宏1,2(),邓洪玲1,胡俊虎1,田瑞1,3   

  1. 1.内蒙古工业大学能源与动力工程学院,内蒙古 呼和浩特 010051
    2.风能太阳能利用技术教育部重点实验室,内蒙古 呼和浩特 010051
    3.内蒙古可再生能源重点实验室,内蒙古 呼和浩特 010051
  • 通讯作者: 杨晓宏
  • 作者简介:张秦意(1997—),男,硕士研究生,1290591838@qq.com
  • 基金资助:
    国家自然科学基金项目(51866011)

Abstract:

In this paper, a solar thermal-photovoltaic membrane distillation of square cavity is designed to study the mechanism and optimization of the system. Firstly, the experiment adopted the feed inlet temperature, the feed flow rate and the solar irradiance as the influence factors, and the membrane flux and the energy consumption as the response values. The relationships between each influence factor and the corresponding response value were analyzed by response surface methodology. Secondly, the central composite design method is used for experimental design, and established the quadratic polynomial regression model of the response value and the influence factor. The reliability analysis of the established model was validated through analysis of variance and experimental results. Finally, the optimal operating conditions and the corresponding optimal membrane flux and energy consumption values of the system were obtained and validated by response surface optimization analysis and experiments. The results show that the best working conditions of the system are: the material liquid inlet temperature 63℃, the material liquid inlet flow rate 232 L/h, the solar irradiance 700 W/m2. Under this working condition, the actual membrane flux reaches 7.28 L/(m2·h), which is higher than the predicted value of 6.39 L/(m2·h), the error between the two is 12.23%, and the corresponding energy consumption value is 10.40 L/(kW·h).

Key words: solar energy, thermal-photovoltaic, distillation, response surface methodology, optimization, optimal condition

摘要:

设计并搭建了太阳能光热-光电方腔型膜蒸馏系统,为研究该系统机理与优化问题,首先以料液进口温度、流量、太阳辐照度为影响因子,膜通量、能耗为响应值,采用响应面法分析各影响因子与响应值间的关系;其次结合中心复合设计法设计实验工况,建立响应值与影响因子的二次多项式回归模型,通过方差分析、实验验证对所建立的模型进行可靠性分析;最后对响应值进行响应面分析与系统优化,获得了系统最佳运行工况和最优膜通量、能耗值,并进行了实验验证。结果表明,系统最佳工况为:料液进口温度为63℃,料液进口流量为232 L/h,太阳辐照度为700 W/m2,在此工况下实际膜通量达到7.28 L/(m2·h),高于预测值6.39 L/(m2·h),两者误差为12.23%,对应的能耗值为10.40 L/(kW·h)。

关键词: 太阳能, 光热-光电, 蒸馏, 响应面法, 优化, 最佳工况

CLC Number: