[1] |
Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185):301-310.
|
[2] |
Hamilton R, Braun B, Dare R, et al. Control issues and challenges in wastewater treatment plants[J]. IEEE Control Systems, 2006, 26(4):63-69.
|
[3] |
Piotrowski R, Brdys M A, Konarczak K, et al. Hierarchical dissolved oxygen control for activated sludge processes[J]. Control Engineering Practice, 2008, 16(1):114-131.
|
[4] |
Carlsson B, Rehnström A. Control of an activated sludge process with nitrogen removal-a benchmark study[J]. Water Science and Technology, 2002, 45(4/5):135-142.
|
[5] |
Chachuat B, Roche N, Latifi M A. Optimal aeration control of industrial alternating activated sludge plants[J]. Biochemical Engineering Journal, 2005, 23(3):277-289.
|
[6] |
Harja G, Nascu I, Muresan C, et al. Improvements in dissolved oxygen control of an activated sludge wastewater treatment process[J]. Circuits, Systems, and Signal Processing, 2016, 35(6):2259-2281.
|
[7] |
Åmand L, Olsson G, Carlsson B. Aeration control-a review[J]. Water Science and Technology, 2013, 67(11):2374-2398.
|
[8] |
Yoo C K, Lee J M, Lee I B. Nonlinear model-based dissolved oxygen control in a biological wastewater treatment process[J]. Korean Journal of Chemical Engineering, 2004, 21(1):14-19.
|
[9] |
Syafiie S, Tadeo F, Martinez E, et al. Model-free control based on reinforcement learning for a wastewater treatment problem[J]. Applied Soft Computing, 2011, 11(1):73-82.
|
[10] |
Rojas J D, Flores-Alsina X, Jeppsson U, et al. Application of multivariate virtual reference feedback tuning for wastewater treatment plant control[J]. Control Engineering Practice, 2012, 20(5):499-510.
|
[11] |
Han H G, Qiao J F, Chen Q L. Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network[J]. Control Engineering Practice, 2012, 20(4):465-476.
|
[12] |
Wahab N A, Katebi R, Balderud J. Multivariable PID control design for activated sludge process with nitrification and denitrification[J]. Biochemical Engineering Journal, 2009, 45(3):239-248.
|
[13] |
Song X L, Zhao Y B, Song Z Y, et al. Dissolved oxygen control in wastewater treatment based on robust PID controller[J]. International Journal of Modelling, Identification and Control, 2012, 15(4):297-303.
|
[14] |
Holenda B, Domokos E, Redey A, et al. Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control[J]. Computers & Chemical Engineering, 2008, 32(6):1270-1278.
|
[15] |
Belchior C A C, Araújo R A M, Landeck J A C. Dissolved oxygen control of the activated sludge wastewater treatment process using stable adaptive fuzzy control[J]. Computers & Chemical Engineering, 2012, 37(2):152-162.
|
[16] |
Qiao J F, Han H G. Identification and modeling of nonlinear dynamical systems using a novel self-organizing RBF-based approach[J]. Automatica, 2012, 48(8):1729-1734.
|
[17] |
Wai R J, Chen M W, Liu Y K. Design of adaptive control and fuzzy neural network control for single-stage boost inverter[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9):5434-5445.
|
[18] |
Qiao J F, Han G, Han H G. Neural network on-line modeling and controlling method for multi-variable control of wastewater treatment processes[J]. Asian Journal of Control, 2014, 16(4):1213-1223.
|
[19] |
Huang M Z, WAN J Q, MA Y W, et al. Control rules of aeration in a submerged biofilm wastewater treatment process using fuzzy neural networks[J]. Expert Systems with Applications, 2009, 36(7):10428-10437.
|
[20] |
张伟, 乔俊飞, 李凡军. 溶解氧浓度的直接自适应动态神经网络控制方法[J]. 控制理论与应用, 2015, 32(1):115-121.ZHANG W, QIAO J F, LI F J. Direct adaptive dynamic neural network control for dissolved oxygen concentration[J]. Control Theory & Applications, 2015, 32(1):115-121.
|
[21] |
Jeppsson U, Pons M N. The COST benchmark simulation model-current state and future perspective[J]. Control Engineering Practice, 2004, 12(3):299-304.
|
[22] |
WU S Q, ER M J. Dynamic fuzzy neural networks-a novel approach to function approximation[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2000, 30(2):358-364.
|
[23] |
许少鹏, 韩红桂, 乔俊飞. 基于模糊递归神经网络的污泥容积指数预测模型[J]. 化工学报, 2013, 64(12):4550-4556.XU S P, HAN H G, QIAO J F. Prediction of activated sludge bulking based on recurrent fuzzy neural network[J]. CIESC Journal, 2013, 64(12):4550-4556.
|
[24] |
Han H G, Qiao J F. A self-organizing fuzzy neural network based on a growing-and-pruning algorithm[J]. IEEE Transactions on Fuzzy Systems, 2010, 18(6):1129-1143.
|
[25] |
HAN H G, WU X L, QIAO J F. Nonlinear systems modeling based on self-organizing fuzzy-neural-network with adaptive computation algorithm[J]. IEEE Transactions on Cybernetics, 2014, 44(4):554-564.
|
[26] |
Vergara J R, Estévez P A. A review of feature selection methods based on mutual information[J]. Neural Computing and Applications, 2014, 24(1):175-186.
|
[27] |
Naghibi T, Hoffmann S, Pfister B. A semidefinite programming based search strategy for feature selection with mutual information measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(8):1529-1541.
|
[28] |
Hacine-Gharbi A, Ravier P, Harba R, et al. Low bias histogram-based estimation of mutual information for feature selection[J]. Pattern Recognition Letters, 2012, 33(10):1302-1308.
|
[29] |
Wei M, Chow T W S, Chan R H M. Heterogeneous feature subset selection using mutual information-based feature transformation[J]. Neurocomputing, 2015, 168:706-718.
|
[30] |
Lin Y Y, Chang J Y, Lin C T. Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(2):310-321.
|