[1] |
LEE J D, PAN C, CHEN S W. Nonlinear dynamics analysis of a two-phase natural circulation loop with multiple nuclear-coupled boiling channels[J]. Annals of Nuclear Energy, 2015, 80:77-94.
|
[2] |
HA K S, PARK R J, KIM H Y, et al. A study on the two-phase natural circulation flow through the annular gap between a reactor vessel and insulation system[J]. International Communications in Heat and Mass Transfer, 2004, 31(1):43-52.
|
[3] |
PARK H, CHOI K, CHO S, et al. Experimental study on the natural circulation of a passive residual heat removal system for an integral reactor following a safety related event[J].Annals of Nuclear Energy, 2008, 35:2249-2258.
|
[4] |
BANKOFF S G. A variable density, single fluid model for two phase flow with particular reference to steam-water flow[J]. Journal of Heat Transfer, 1960, 82(4):265-272.
|
[5] |
ZUBER N, FINDLAY J A. Average volumetric concentration in two-phase flow system[J]. Journal of Heat Transfer, 1965, 87(4):453-468.
|
[6] |
KLAUSER J F, MEI R, BERNHARD D M, et al. Vapor bubble departure in forced convection boiling[J]. International Journal of Heat and Mass Transfer, 1993, 36(3):651-662.
|
[7] |
ZENG L Z,KLAUSER J F, BERNHARD D M, et al. A unified model for the prediction of bubble detachment diameters in boiling systems(Ⅱ):Flow boiling[J]. International Journal of Heat and Mass Transfer, 1993, 36(9):2271-2279.
|
[8] |
YUN B J, SPLAWSKI A, LO S, et al. Prediction of a subcooled boiling flow with advanced two-phase flow models[J]. Nuclear Engineering and Design, 2012, 253:351-359.
|
[9] |
CHEN D Q, PAN L M, REN S. Prediction of bubble detachment diameter in flow boiling based on forced analysis[J]. Nuclear Engineering and Design, 2012, 243:263-271.
|
[10] |
徐建军, 陈炳德, 王小军. 竖直流动沸腾换热滑移汽泡速度预测及运动机理[J]. 化学工程, 2009, 37(2):27-30.XU J J, CHEN B D, WANG X J. Predicting velocity and motive mechanism of sliding bubble in vertical flow boiling[J]. Chemical Engineering (China), 2009, 37(2):27-30.
|
[11] |
徐建军, 陈炳德, 王小军. 水平流动沸腾近壁汽泡滑移速度预测及分析[J]. 原子能科学技术, 2009, 43(5):426-430.XU J J, CHEN B D, WANG X J. Predicting model and analysis for velocity of sliding bubble near wall in horizontal flow boiling[J]. Atomic Energy Science and Technology, 2009, 43(5):426-430.
|
[12] |
OKAWA T, ISHIDA T, KATAOKA I, et al. An experimental study on bubble rise path after the departure from a nucleation site in vertical upflow boiling[J]. Experimental Thermal and Fluid Science, 2005, 29(3):287-294.
|
[13] |
TRONIEWSKI L, ULICH R. Two-phase gas-liquid flow in rectangular channels[J]. Chemical Engineering Science, 1984, 39(4):751-765.
|
[14] |
SITU R, HIBIKI T, ISHII M, et al. Bubble lift-off size in forced convective subcooled boiling flow[J]. International Journal of Heat and Mass Transfer, 2005, 48(25/26):5536-5548.
|
[15] |
OKAWA T, ISHIDA T, KATAOKA I, et al. Bubble rise characteristics after the departure from a nucleation site in vertical upflow boiling of subcooled water[J]. Nuclear Engineering and Design, 2005, 235(10/11/12):1149-1161.
|
[16] |
李少丹, 谭思超, 许超, 等. 流动沸腾条件下窄通道内的汽泡生长和冷凝[J]. 原子能科学技术, 2014, 43(S1):233-238.LI S D, TAN S C, XU C, et al. Bubble growth and condensation in narrow channel of subcooled flow boiling[J]. Atomic Energy Science and Technology, 2014, 43(S1):233-238.
|
[17] |
LI S D, TAN S C, XU C, et al. An experimental study of sliding bubble characteristics in narrow channel[J]. International Journal of Heat and Mass Transfer, 2013, 57(1):89-99.
|
[18] |
李少丹. 海洋条件下局部汽泡行为及沸腾换热特性研究[D]. 哈尔滨:哈尔滨工程大学, 2015.LI S D. Study of local bubble behavior and boiling heat transfer characteristics under ocean condition[D]. Harbin:Harbin Engineering University, 2015.
|
[19] |
袁德文, 潘良明, 陈德奇. 竖直窄流道内过冷沸腾的单汽泡生长模型[J]. 化工学报, 2009, 60(11):2723-1728.YUAN D W, PAN L M, CHEN D Q. Model for single bubble of subcooled flow boiling in vertical narrow channel[J]. CIESC Journal, 2009, 60(11):2723-2728.
|
[20] |
袁德文, 潘良明, 魏敬华, 等. 窄流道内过冷沸腾条件下汽泡滑移特性研究[J]. 核动力工程, 2011, 32(3):77-82.YUAN D W, PAN L M, WEI J H, et al. Analysis of flow characteristics under flow fluctuation condition in circular channel[J]. Nuclear Power Engineering, 2011, 32(3):77-82.
|
[21] |
袁德文, 潘良明, 陈德奇, 等. 窄流道内压力对汽泡动力学特性的影响[J]. 工程热物理学报, 2009, 30(4):605-607.YUAN D W, PAN L M, CHEN D Q, et al. Pressure effects of narrow channel on the characteristics of bubble dynamics[J]. Journal of Engineering Thermophysics, 2009, 30(4):605-607.
|
[22] |
TANG J G, YAN C Q, SUN L C. A study visualizing the collapse of vapor bubbles in a subcooled pool[J]. International Journal of Heat and Mass Transfer, 2015, 88:597-608.
|
[23] |
SHEPHERD J E, STUTEVANT B. Rapid evaporation at the superheat limit[J]. Journal of Fluid Mechanics, 1982, 121:379-402.
|
[24] |
FROST D, STURTEVANT B. Effects of ambient pressure on the instability of a liquid boiling explosively at the superheat limit[J]. Journal of Heat Transfer, 1986, 108(2):418-424.
|
[25] |
CHEN R H, TIAN W X, SU G H, et al. Numerical investigation on bubble dynamics during flow boiling using moving particle semi-implicit method[J]. Nuclear Engineering and design, 2010, 240(11):3830-3840.
|
[26] |
徐建军, 陈炳德, 王小军. 竖直矩形窄缝通道内近壁滑移汽泡运动特征研究[J]. 核动力工程, 2011, 32(2):59-63.XU J J, CHEN B D, WANG X J. Study on motive characteristic of sliding bubble near wall in a vertical narrow rectangular channel[J]. Nuclear Power Engineering, 2011, 32(2):59-63.
|
[27] |
庞凤阁, 高璞珍, 王兆祥, 等. 海洋条件对自然循环影响的理论研究[J]. 核动力工程, 1995, 16(4):330-335.PANG F G, GAO P Z, WANG Z X, et al. Theoretical research for effect of ocean condition on natural circulation[J]. Nuclear Power Engineering, 1995, 16(4):330-335.
|
[28] |
高璞珍, 刘顺隆,王兆祥. 纵摇和横摇对自然循环的影响[J]. 核动力工程, 1999, 20(3):228-231.GAO P Z, LIU S L, WANG Z X. Effects of pitching and roiling upon natural circulation[J]. Nuclear Power Engineering, 1999, 20(3):228-231.
|
[29] |
谭思超, 庞凤阁, 高璞珍. 摇摆对自然循环传热特性影响的实验研究[J]. 核动力工程, 2006, 27(5):33-36.TAN S C, PANG F G, GAO P Z. Experimental research of effect of roiling upon heat transfer characteristic of natural circulation[J]. Nuclear Power Engineering, 2006, 27(5):33-36.
|
[30] |
周涛, 周精精, 琚忠云, 等. 非能动自然循环技术的发展和研究[J]. 核安全, 2013, 12(3):32-36.ZHOU T, ZHOU J J, JU Z Y, et al. The development and study on passive natural circulation[J]. Nuclear Safety, 2013, 12(3):32-36.
|