CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 696-706.DOI: 10.11949/j.issn.0438-1157.20181354

Previous Articles     Next Articles

Dioxin emission concentration soft measuring approach of municipal solid waste incineration based on selective ensemble kernel learning algorithm

Jian TANG1,2(),Junfei QIAO1,2   

  1. 1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
    2. Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China
  • Received:2018-11-16 Revised:2018-11-26 Online:2019-02-05 Published:2019-02-05
  • Contact: Jian TANG

基于选择性集成核学习算法的固废焚烧过程二噁英排放浓度软测量

汤健1,2(),乔俊飞1,2   

  1. 1. 北京工业大学信息学部,北京 100124
    2. 计算智能与智能系统北京市重点实验室,北京 100124
  • 通讯作者: 汤健
  • 作者简介:汤健(1974—),男,博士,教授,<email>freeflytang@bjut.edu.cn</email>
  • 基金资助:
    科学技术部国家重点研发计划项目(2018YFC1900801);基金项目:国家自然科学基金项目(61573364,61873009);矿冶过程自动控制技术国家(北京)重点实验室项目(BGRIMM-KZSKL-2017-07)

Abstract:

Dioxin (DXN) emitted from the municipal solid waste incineration (MSWI) process is a persistent pollutant of the “century poison”. DXN is one of the highly toxic and persistent pollution. The principal model of DXN emission is difficult to obtained duo to the complex multi-stage and multi-temperature phase’s physical chemical characteristics. In practical, DXN emission concentration is off-line measured with month or quarter period by quantified national laboratory with long lag time delay. Aiming at these problems, a new DXN emission concentration soft measuring method based on selective ensemble (SEN) kernel learning algorithm is proposed. At first, candidate kernel parameters and regularization parameters are given based on prior knowledge. Then, candidate sub-sub-models based on these super parameters are constructed. Thirdly, coupled optimization and weighting algorithms are used to build SEN-sub-models. Finally, these SEN-sub-models are selective combined as final SEN model by using optimization and weighting algorithms again. Simulation results based on the concrete compression strength and incineration process DXN data validate effectiveness of the proposed approach.

Key words: municipal solid waste incineration, process systems, dioxin, parameter estimation, selective ensemble, waste treatment

摘要:

城市固废焚烧(MSWI)过程排放的二噁英 (DXN)是被称为“世纪之毒”的持续性污染物。该过程的多阶段、多温度区间的物理化学特性导致DXN排放浓度的机理模型难以构建。工业实际中通常以月或季为周期耗时近1周时间在实验室以离线化验方式滞后检测。针对这些问题,提出了基于选择性集成(SEN)核学习算法的DXN排放浓度软测量方法。首先,基于先验知识给出候选核参数集和候选惩罚参数集,采用核学习算法构建基于这些超参数的候选子子模型;然后,耦合优化和加权算法对相同核参数的候选子子模型进行选择与合并,进而得到基于不同核参数的候选SEN子模型集合;最后,再次采用优化和加权算法获得结构与超参数自适应的多层SEN软测量模型。采用UCI平台水泥抗压强度和焚烧过程DXN数据验证了所提方法的有效性。

关键词: 城市固废焚烧, 过程系统, 二噁英, 参数估值, 选择性集成, 废物处理

CLC Number: