[1] |
孙志坚, 何国安, 王立新, 等. 两种电子器件用重力型热管散热器的换热特性[J]. 化工学报, 2006, 57(10): 2283-2288. SUN Z J, HE G A, WANG L X, et al. Heat transfer characteristics of two different thermosyphon radiators for electronic device[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(10): 2283-2288.
|
[2] |
张平, 宣益民, 李强. 界面接触热阻的研究进展[J]. 化工学报, 2012, 63(2): 335-349. ZHANG P, XUAN Y M, LI Q. Development on thermal contact resistance[J]. CIESC Journal, 2012, 63(2): 335-349.
|
[3] |
郭兆阳, 徐鹏, 王元华, 等. 烧结性多孔表面管外池沸腾传热特性[J]. 化工学报, 2012, 63(12): 3798-3804. GUO Z Y, XU P, WANG Y H, et al. Pool boiling heat transfer on sintered porous coating tubes[J]. CIESC Journal, 2012, 63(12): 3798-3804.
|
[4] |
程云, 李菊香, 莫光东. 水在开孔泡沫铜中的池沸腾传热特性[J]. 化工学报, 2013, 64(4): 3798-3804. CHEN Y, LI J X, MO G D. Pool boiling heat transfer of water in porous copper foam[J]. CIESC Journal, 2013, 64(4): 3798-3804.
|
[5] |
PHAN H T, CANEY N, MARTY P, et al. Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24): 5459-5471.
|
[6] |
BERTOSSIA R, CANEYBC N, GRUSSBD A J, et al. Pool boiling enhancement using switchable polymers coating[J]. Applied Thermal Engineering, 2015, 77: 121-126.
|
[7] |
BOURDON B, DI MARCO P, RIOBOO R, et al. Enhancing the onset of pool boiling by wettability modification on nanometrically smooth surfaces[J]. International Communications in Heat and Mass Transfer, 2013, 45: 11-15.
|
[8] |
HSU C C, CHIU W C, KUO L S, et al. Reversed boiling curve phenomenon on surfaces with interlaced wettability[J]. AIP Advances, 2014, 4(10): 107110.
|
[9] |
FORREST E, WILLIAMSON E, BUONGIORNO J, et al. Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings[J]. International Journal of Heat and Mass Transfer, 2010, 53(1/2/3): 58-67.
|
[10] |
KIM J M, KANG S H, YU D I, et al. Smart surface in flow boiling: spontaneous change of wettability[J]. International Journal of Heat and Mass Transfer, 2017, 105: 147-156.
|
[11] |
DONG L N, QUAN X J, CHENG P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano structures[J]. International Journal of Heat and Mass Transfer, 2014, 71: 189-196.
|
[12] |
HANLEY H, COYLE C, BUONGIORNO J, et al. Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux[J]. Applied Physics Letters, 2013, 103(2): 024102.
|
[13] |
KANDLIKAR S G. Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannel[J]. Journal of Heat Transfer, 2011, 133(5): 052902.
|
[14] |
CHEN Y K, MELVIN L S, RODRIGUEZ S, et al. Capillary driven flow in micro scale surface structures[J]. Microelectronic Engineering, 2009, 86(4/5/6): 1317-1320.
|
[15] |
CHU K H, ENRIGHT R, WANG E N. Structured surfaces for enhanced pool boiling heat transfer[J]. Applied Physics Letters, 2012, 100(24): 241603.
|
[16] |
JO H J, PARK H S, KIM M H. Single bubble dynamics on hydrophobic-hydrophilic mixed surfaces[J]. International Journal of Heat and Mass Transfer, 2016, 93: 554-565.
|
[17] |
JO H J, AHN H S, KANG S H, et al. A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and hetergeneous wetting surface[J]. International Journal of Heat and Mass Transfer, 2011, 54(25/26): 5643-5652.
|
[18] |
KIM B S, CHOI G, SHIM D I, et al. Surface roughening for hemi-wicking and its impact on convective boiling heat transfer[J]. International Journal of Heat and Mass Transfer, 2016, 102: 1100-1107.
|
[19] |
JAIKUMAR A, KANDLIKAR S G. Enhanced pool boiling heat transfer mechanisms for selectively sintered open microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 88: 652-661.
|
[20] |
JAIKUMAR A, KANDLIKAR S G. Ultra-high pool boiling performance and effect of channel width with selectively coated open microchannels[J]. International Journal of Heat and Mass Transfer, 2016, 95: 795-805.
|
[21] |
JI X B, XU J L, ZHAO Z W, et al. Pool boiling heat transfer on uniform and non-uniform porous coating surfaces[J]. Experiment Thermal and Fluid Science, 2013, 48: 198-212.
|
[22] |
TANG Y, ZENG J, ZHANG S W, et al. Effect of structural parameters on pool boiling heat transfer for porous interconnected microchannel nets[J]. International Journal of Heat and Mass Transfer, 2016, 93: 906-917.
|
[23] |
BETZ A R, XU J, QIU H, et al. Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?[J]. Applied Physics Letters, 2010, 97(14): 141909.
|
[24] |
BETZ A R, JENKINS J, KIM C J, et al. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 733-741.
|
[25] |
HSU C C, CHEN P H. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings[J]. International Journal of Heat and Mass Transfer, 2012, 55(13-14): 3713-3719.
|
[26] |
JO H J, KIM S H, KIM H, et al. Nucleate boiling performance on nano/microstructures with different wetting surfaces[J]. Nanoscale Research Letters, 2012, 7(1): 242.
|
[27] |
JO H J, YU D I, HOH H, et al. Boiling on spatially controlled heterogeneous surfaces: wettability patterns on microstructures[J]. Applied Physics Letters, 2015, 106(18): 1-5.
|
[28] |
JO H J, KIM S H, PARK H S, et al. Critical heat flux and nucleate boiling on several heterogeneous wetting surfaces: controlled hydrophobic patterns on a hydrophilic substrate[J]. International Journal of Multiphase Flow, 2014, 62: 101-109.
|
[29] |
WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28(8): 988-994.
|
[30] |
MIKIC B B, ROHSENOW W M. A new correlation of pool-boiling data including effect of heating surface characteristics[J]. Journal of Heat Transfer, 1969, 91(2): 245-250.
|