[1] |
AMINI M, YOUNESI H, LORESTANI A A Z, et al. Determination of optimum conditions for dairy wastewater treatment in UAASB reactor for removal of nutrients[J]. Bioresource Technology, 2013, 145(10):71-79.
|
[2] |
CHANG N N, SHIAO J C, GONG G C. Diversity of demersal fish in the East China Sea:implication of eutrophication and fishery[J]. Continental Shelf Research, 2012, 47(47):42-54.
|
[3] |
STROKAL M, YANG H, ZHANG Y, et al. Increasing eutrophication in the coastal seas of China from 1970 to 2050[J]. Marine Pollution Bulletin, 2014, 85(1):123-40.
|
[4] |
LIN L, YUAN S, CHEN J, et al. Removal of ammonia nitrogen in wastewater by microwave radiation[J]. Journal of Hazardous Materials, 2009, 161(2):1063-1068.
|
[5] |
王文萍, 郭周芳, 尚伟伟, 等. 水中氨氮的测定方法[J].水科学与工程技术, 2012, (3):26-28. WANG W P, GUO Z F, SHANG W W, et al. Determination methods summary of ammonia nitrogen in water[J]. Water Sciences and Engineering Technology, 2012, (3):26-28.
|
[6] |
CHON K, LEE Y, TRABER J, et al. Quantification and characterization of dissolved organic nitrogen in wastewater effluents by electrodialysis treatment followed by size-exclusion chromatography with nitrogen detection[J]. Water Research, 2013, 47(14):5381-5391.
|
[7] |
LUO S. Comparison between four automatic on-line monitoring instrument and laboratorial national standard method to determine ammonia-nitrogen in water[J]. Environmental Monitoring in China, 2010, 26(3):32-35.
|
[8] |
DE CANETE J F, DEL SAZ-OROZCO P, BARATTI R, et al. A soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network[J]. Expert Systems with Applications, 2016, 63:8-19.
|
[9] |
许玉格, 刘莉, 曹涛. 基于Fast-RVM的在线软测量预测模型[J]. 化工学报, 2015, 66(11):4540-4545. XU Y G, LIU L, CAO T. On-line soft measuring model based on Fast-RVM[J]. CIESC Journal, 2015, 66(11):4540-4545.
|
[10] |
QIU Y, LIU Y, HUANG D. Data-driven soft-sensor design for biological wastewater treatment using deep neural networks and genetic algorithms[J]. Journal of Chemical Engineering of Japan, 2016, 49(10):925-936.
|
[11] |
LUO W, MORRIS A J, KARIM M N, et al. Online identification of a pH waste water neutralisation process using time-varying non linear ARX models[C]//IEEE International Conference on Systems, Man, and Cybernetics. IEEE, 1996:101-112.
|
[12] |
SAPTORO A. State of the art in the development of adaptive soft sensors based on just-in-time models[J]. Procedia Chemistry, 2014, 9:226-234.
|
[13] |
乔俊飞, 郭楠, 韩红桂. 基于神经网络的BOD参数软测量仪表的设计[J]. 计算机与应用化学, 2013, 30(10):1219-1222. QIAO J F, GUO N, HAN H G. Design of soft measurement instrument for BOD parameters based on neural network[J]. Computer and Applied Chemistry, 2013, 30(10):1219-1222.
|
[14] |
HAN H G, QIAO J F. Prediction of activated sludge bulking based on a self-organizing RBF neural network[J]. Journal of Process Control, 2012, 22(6):1103-1112.
|
[15] |
BAGHERI M, MIRBAGHERI S A, EHTESHAMI M, et al. Modeling of a sequencing batch reactor treating municipal wastewater using multi-layer perceptron and radial basis function artificial neural networks[J]. Process Safety and Environmental Protection, 2015, 93:111-123.
|
[16] |
CHOI D J, PARK H. A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process[J]. Water Research, 2001, 35(16):3959-3967.
|
[17] |
HAN H G, QIAO J F, CHEN Q L. Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network[J]. Control Engineering Practice, 2012, 20(4):465-476.
|
[18] |
杨琴, 谢淑云. BP神经网络在洞庭湖氨氮预测中的应用[J]. 水资源与水工程学报, 2006, 17(12):65-67. YANG Q, XIE S Y. Application of BP neural network into predicting NH3-N concentration of Dong Ting lake[J]. Journal of Water Resources & Water Engineering, 2006, 17(12):65-70.
|
[19] |
DENG C, KONG D, SONG Y, et al. A soft-sensing approach to on-line predicting ammonia-nitrogen based on RBF neural networks[C]//Second International Conference on Embedded Software and Systems. 2009:454-458.
|
[20] |
RÁDULY B, GERNAEY K V, CAPODAGLIO A G, et al. Artificial neural networks for rapid wwtp performance evaluation:methodology and case study[J]. Environmental Modelling & Software, 2007, 22(8):1208-1216.
|
[21] |
LIN Y Y, CHANG J Y, LIN C T. A TSK-type-based self-evolving compensatory interval type-2 fuzzy neural network (tscit2fnn) and its applications[J]. IEEE Transactions on Industrial Electronics, 2014, 61(1):447-459.
|
[22] |
LIN Y Y, LIAO S H, CHANG J Y, et al. Simplified interval type-2 fuzzy neural networks[J]. IEEE Transactions on Neural Networks & Learning Systems, 2014, 25(5):959-969.
|
[23] |
MENDEL J M, WU D. Computing with words for hierarchical and distributed decision-making[M]//Computational Intelligence in Complex Decision Systems. Singapore:Atlantis Press, 2010:233-271.
|
[24] |
JUANG C F, CHEN W Y, LIANG C W. Speedup of learning in interval type-2 neural fuzzy systems through graphic processing units[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(4):1286-1298.
|
[25] |
DENG Z, CHOI K S, CAO L, et al. T2fela:type-2 fuzzy extreme learning algorithm for fast training of interval type-2 TSK fuzzy logic system[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4):664-676.
|
[26] |
KADLEC P, GABRYS B, STRANDT S. Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering, 2009, 33(4):795-814.
|
[27] |
MORCHID M, DUFOUR R, BOUSQUET P M, et al. Feature selection using principal component analysis for massive retweet detection[J]. Pattern Recognition Letters, 2014, 49:33-39.
|
[28] |
童楚东, 史旭华. 基于互信息的PCA方法及其在过程监测中的应用[J]. 化工学报, 2015, 66(10):4101-4106. TONG C D, SHI X H. Mutual information based PCA algorithm with application in process monitoring[J]. CIESC Journal, 2015, 66(10):4101-4106.
|
[29] |
BRO R, SMILDE A K. Principal component analysis[J]. Analytical Methods, 2014, 6(9):2812-2831.
|
[30] |
WANG C H, CHENG C S, LEE T T. Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN)[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2004, 34(3):1462-1477.
|
[31] |
ABIYEV R H, KAYNAK O. Type 2 fuzzy neural structure for identification and control of time-varying plants[J]. IEEE Transactions on Industrial Electronics, 2010, 57(12):4147-4159.
|
[32] |
EL HOUARI M B, ZEGAOUI O, ABDALLAOUI A. Development of an artificial neural network model to predict the monthly air temperature in the region of Meknes (Morocco)[J]. Development, 2015, 2(11):18-27.
|