CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 687-695.DOI: 10.11949/j.issn.0438-1157.20181362
Previous Articles Next Articles
Wenjing LI1,2(),Meng LI1,2,Junfei QIAO1,2
Received:
2018-11-18
Revised:
2018-11-22
Online:
2019-02-05
Published:
2019-02-05
Contact:
Wenjing LI
通讯作者:
李文静
作者简介:
李文静(1985—),女,博士,副教授,<email>wenjing.li@bjut.edu.cn</email>
基金资助:
CLC Number:
Wenjing LI, Meng LI, Junfei QIAO. Effluent BOD soft measurement based on mutual information and self-organizing RBF neural network[J]. CIESC Journal, 2019, 70(2): 687-695.
李文静, 李萌, 乔俊飞. 基于互信息和自组织RBF神经网络的出水BOD软测量方法[J]. 化工学报, 2019, 70(2): 687-695.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181362
数据集 | 训练样本数 | 测试样本数 | 特征数目 | 选择特征维数 |
---|---|---|---|---|
Abalone | 2000 | 2177 | 8 | 4 |
Cal Housing | 8000 | 12640 | 8 | 5 |
Table 1 Information of UCI public datasets
数据集 | 训练样本数 | 测试样本数 | 特征数目 | 选择特征维数 |
---|---|---|---|---|
Abalone | 2000 | 2177 | 8 | 4 |
Cal Housing | 8000 | 12640 | 8 | 5 |
数据集 | 方法 | 测试MSE | 隐含层神经元数 | 训练 时间/s |
---|---|---|---|---|
Abalone | MRAN | 0.0070φ | — | 255.80① |
GAP-RBF | 0.0093φ | — | 14.28① | |
ErrCor-RBF | 0.0059φ | 4 | 4.81 ① | |
ESRBFNN-All | 0.0057 | 3 | 11.82 | |
ESRBFNN-MI | 0.0056 | 3 | 7.98 | |
Cal Housing | MRAN | 0.0255② | 64② | 2891.5② |
GGAP-RBF | 0.0193② | 24② | 191.23② | |
ErrCor-RBF | 0.0178 | 5 | 77.00 | |
ESRBFNN-All | 0.0175 | 4 | 133.21 | |
ESRBFNN-MI | 0.0173 | 4 | 83.87 |
数据集 | 方法 | 测试MSE | 隐含层神经元数 | 训练 时间/s |
---|---|---|---|---|
Abalone | MRAN | 0.0070φ | — | 255.80① |
GAP-RBF | 0.0093φ | — | 14.28① | |
ErrCor-RBF | 0.0059φ | 4 | 4.81 ① | |
ESRBFNN-All | 0.0057 | 3 | 11.82 | |
ESRBFNN-MI | 0.0056 | 3 | 7.98 | |
Cal Housing | MRAN | 0.0255② | 64② | 2891.5② |
GGAP-RBF | 0.0193② | 24② | 191.23② | |
ErrCor-RBF | 0.0178 | 5 | 77.00 | |
ESRBFNN-All | 0.0175 | 4 | 133.21 | |
ESRBFNN-MI | 0.0173 | 4 | 83.87 |
序号 | 变量 | 归一化互信息 |
---|---|---|
1 | 出水总氮浓度 | 0.8494 |
2 | 出水氨氮浓度 | 0.8468 |
3 | 进水总氮浓度 | 0.8450 |
4 | 进水BOD浓度 | 0.8338 |
5 | 进水氨氮浓度 | 0.8302 |
6 | 出水磷酸盐浓度 | 0.8285 |
7 | 生化MLSS浓度 | 0.8228 |
8 | 生化池DO浓度 | 0.8159 |
9 | 进水磷酸盐浓度 | 0.8073 |
10 | 进水COD浓度 | 0.8006 |
Table 3 Feature variables for effluent BOD and its normalized mutual information
序号 | 变量 | 归一化互信息 |
---|---|---|
1 | 出水总氮浓度 | 0.8494 |
2 | 出水氨氮浓度 | 0.8468 |
3 | 进水总氮浓度 | 0.8450 |
4 | 进水BOD浓度 | 0.8338 |
5 | 进水氨氮浓度 | 0.8302 |
6 | 出水磷酸盐浓度 | 0.8285 |
7 | 生化MLSS浓度 | 0.8228 |
8 | 生化池DO浓度 | 0.8159 |
9 | 进水磷酸盐浓度 | 0.8073 |
10 | 进水COD浓度 | 0.8006 |
方法 | 测试MSE | 隐含层神经元数 | 训练时间/s |
---|---|---|---|
MRAN | 0.6980① | 20① | 156.25① |
GGAP-RBF | 0.3325① | 11① | 73.59① |
FS-RBFNN | 0.3015① | 11① | 63.24① |
ErrCor-RBF | 0.3087 | 7 | 3.34 |
ESRBFNN-5 | 0.2886 | 5 | 4.82 |
ESRBFNN-MI | 0.1508 | 14 | 41.14 |
Table 4 Performance comparisons between neural network models for effluent BOD prediction
方法 | 测试MSE | 隐含层神经元数 | 训练时间/s |
---|---|---|---|
MRAN | 0.6980① | 20① | 156.25① |
GGAP-RBF | 0.3325① | 11① | 73.59① |
FS-RBFNN | 0.3015① | 11① | 63.24① |
ErrCor-RBF | 0.3087 | 7 | 3.34 |
ESRBFNN-5 | 0.2886 | 5 | 4.82 |
ESRBFNN-MI | 0.1508 | 14 | 41.14 |
1 | 国家环境保护局 . 水质分析方法标准: GB7466~7494—87[S]. 北京: 中国标准出版社, 1987. |
State Environmental Protection Agency . Standard for water quality analysis: GB7466—7494—87[S]. Beijing: Standards Press of China, 1987. | |
2 | 李一锦, 夏善红 . BOD微生物传感器关键技术及其发展[J]. 传感器与微系统, 2015, 34(7): 5-11. |
Li Y J , Xia S H . Key techniques of BOD microbial sensor and its development[J]. Transducer and Microsystem Technologies, 2015, 34(7): 5-11. | |
3 | 周平, 柴天佑 . 典型赤铁矿磨矿过程智能运行反馈控制[J]. 控制理论与应用, 2014, 31(10): 1352-1359. |
Zhou P , Chai T Y . Intelligent operational feedback control for typical hematite grinding processes[J]. Control Theory & Applications, 2014, 31(10): 1352-1359. | |
4 | 蒋朝辉, 李晞月, 桂卫华, 等 . 分段线性回归和动态加权神经网络融合的高炉料位预测[J]. 控制理论与应用, 2015, 32(6): 801-809. |
Jiang Z H , Li X Y , Gui W H , et al . Blast furnace stockline prediction by segmented linear-regression and dynamic weighting neural network[J]. Control Theory & Application, 2015, 32(6): 801-809. | |
5 | Mustafa Y A , Jai G M , Alwared A I , et al . The use of artificial neural network (ANN) for the prediction and simulation of oil degradation in wastewater by AOP[J]. Environmental Science & Pollution Research, 2014, 21(12): 1-8. |
6 | Haimi H , Mulas M , Corrona F , et al . Data-derived soft-sensors for biological wastewater treatment plants: an overview[J]. Environmental Modelling & Software, 2013, 47(3): 88-107. |
7 | Dürrenmatt D J , Gujer W . Data-driven modeling approaches to support wastewater treatment plant operation[J]. Environmental Modelling & Software, 2012, 30(5): 47-56. |
8 | 冉维丽, 乔俊飞 . 基于PCA-GABP神经网络的BOD软测量方法[J]. 控制工程, 2004, 11(3): 212-215. |
Ran W L , Qiao J F . Soft-measuring technique to predict BOD based on PCA-GABP neural networks[J]. Control Engineering of China, 2004, 11(3): 212-215. | |
9 | Tao E P , Shen W H , Liu T L , et al . Fault diagnosis based on PCA for sensors of laboratorial wastewater treatment process[J]. Chemometrics & Intelligent Laboratory Systems, 2013, 128(15): 49-55. |
10 | 郭民, 张一弛, 韩红桂 . 基于模糊神经网络的出水总磷软测量方法研究[J]. 计算机与应用化学, 2016, 33(2): 223-227. |
Guo M , Zhang Y C , Han H G . Effluent total phosphorus detecting method and its application based on soft-sensor and FNN techniques[J]. Computers and Applied Chemistry, 2016, 33(2): 223-227. | |
11 | Sharmin R , Sundararaj U , Shah S , et al . Inferential sensors for estimation of polymer quality parameters: industrial application of a PLS-based soft sensor for a LDPE plant[J]. Chemical Engineering Science, 2006, 61(19): 6372-6384. |
12 | Mirbagheri S A , Bagheri M , Boudaghpour S , et al . Performance evaluation and modeling of a submerged membrane bioreactor treating combined municipal and industrial wastewater using radial basis function artificial neural networks[J]. Journal of Environmental Health Science & Engineering, 2015, 13(1): 1-15. |
13 | 王树东, 葛珉昊, 陈明明 . 基于混合递阶遗传算法优化RBF神经网络的BOD5软测量方法[J]. 给水排水, 2014, 40(3): 149-153. |
Wang S D , Ge M H , Chen M M . A BOD5 soft-sensing method based on a hybrid hierarchical genetic algorithm optimized RBF neural network[J]. Water & Wastewater Engineering, 2014, 40(3): 149-153. | |
14 | Han H G , Chen Q L , Qiao J F . An efficient self-organizing RBF neural network for water quality prediction[J]. Neural Networks, 2011, 24(7): 717-725. |
15 | Tyukin I Y , Prokhorov D V . Feasibility of random basis function approximators for modeling and control[C]//Alexander P. Proceedings of 2009 IEEE International Symposium on Intelligent Control (ISIC). St. Petersburg, Russia: IEEE, 2009: 1391-1396. |
16 | Li M , Wang D . Insights into randomized algorithms for neural networks: practical issues and common pitfalls[J]. Information Sciences, 2017, s382/383: 170-178. |
17 | Yu H , Reiner P D , Xie T , et al . An incremental design of radial basis function networks[J]. IEEE Transactions on Neural Network and Learning System, 2014, 25(10): 1793-1803. |
18 | Press W H , Teukolsky S A , Vetterling W T , et al . Numerical Recipes in C[M]. Cambridge: Cambridge University Press, 1988. |
19 | Yu L , Liu H . Efficient feature selection via analysis of relevance and redundancy[J]. Journal of Machine Learning Research, 2004, 5(12): 1205-1224. |
20 | Wilamowski B M , Yu H . Improved computation for Levenberg-Marquardt training[J]. IEEE Transactions on Neural Networks, 2010, 21(6): 930-937. |
21 | Xie T , Yu H , Hewlett J , et al . Fast and efficient second-order method for training radial basis function networks[J]. IEEE Transactions on Neural Networks & Learning Systems, 2012, 23(4): 609-619. |
22 | Hagan M T , Menhaj M B . Training feedforward networks with the Marquardt algorithm[J]. IEEE Transactions on Neural Networks, 2002, 5(6): 989-993. |
23 | Yu W , Harris T J . Parameter uncertainty effects on variance-based sensitivity analysis[J]. Reliability Engineering & System Safety, 2009, 94(2): 596-603. |
24 | Saltelli A . Making best use of model evaluations to compute sensitivity indices[J]. Computer Physics Communications, 2002, 145(2): 280-297. |
25 | Lauret P , Fock E , Mara T A . A node pruning algorithm based on a Fourier amplitude sensitivity test method[J]. IEEE Transactions on Neural Networks, 2006, 17(2): 273-293. |
26 | Qiao J , Li S , Han H , et al . An improved algorithm for building self-organizing feedforward neural networks[J]. Neurocomputing, 2017, 262: 28-40. |
27 | Lu Y , Sundararajan N , Saratchandran P . A sequential learning scheme for function approximation using minimal radial basis function neural networks[J]. Neural Computation, 1997, 9(2): 461-478. |
28 | Huang G B , Saratchandran P , Sundararajan N . An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks[J]. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 2004, 34(6): 2284-2292. |
29 | Huang G B , Saratchandran P , Sundararajan N . A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation[J]. IEEE Transactions on Neural Networks, 2005, 16(1): 57-67. |
[1] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[2] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[3] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[4] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[5] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[6] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[7] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[8] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[9] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[10] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[11] | Kenian SHI, Jingyuan ZHENG, Yu QIAN, Siyu YANG. Two-stage stochastic programming of steam power system based on Markov chain [J]. CIESC Journal, 2023, 74(2): 807-817. |
[12] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[13] | Jing YANG, Zhenkang LIN, Jun TANG, Cheng FAN, Kening SUN. A review of fault characteristics, fault diagnosis and identification for lithium-ion battery systems [J]. CIESC Journal, 2022, 73(8): 3394-3405. |
[14] | Xinjie ZHOU, Jianlin WANG, Xingcong AI, Enguang SUI, Rutong WANG. IDPC-RVM based online prediction of quality variables for multimode batch processes [J]. CIESC Journal, 2022, 73(7): 3120-3130. |
[15] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||