[1] |
OSMANN S, JIN H, FREDERIC B, et al. In situ study of the thermal properties of hydrate slurry by high pressure DSC[C]//The 22nd International Congress of Refrigeration, Beijing, 2007.
|
[2] |
ANTHONY D, LAURENCE F, SANDRINE M, et al. Rheological study of CO2 hydrate slurry in a dynamic loop applied to secondary refrigeration[J]. Chemical Engineering Science, 2008, 63(13):371-378.
|
[3] |
COOK J G, LAUBITZ M J. The thermal conductivity of two clathrate hydrates[C]//Proceedings of 17th International Thermal Conductivity Conference, Gaithersburg:Maryland Plenum, 1981.
|
[4] |
WAITE W F, PINKSTON J, KIRBY S H. Preliminary laboratory thermal conductivity measurements in pure methane hydrate and methane hydrate-sediment mixtures:a progress report[C]//Proceedings of the Fourth International Conference on Gas Hydrate, Yokohama, Japan, 2002:728-733.
|
[5] |
黄犊子, 樊栓狮, 梁德青. 水合物合成及热导率测定[J]. 地球物理学报, 2005, 48(5):1125-1131. HUANG D Z, FAN S S, LIANG D Q. Measurement of gas hydrate composition and its thermal conductivity[J]. Geophys, 2005, 48(5):1125-1131.
|
[6] |
LI D L, DU J W, HE S. Measurement and modeling of the effective thermal conductivity for porous methane hydrate samples[J]. Sci. China Chem., 2011, 54(3):373-379.
|
[7] |
MATSUMOTO R, UCHIDA T, WASEDA A, et al. Occurrence, structure and composition of natural gas hydrate recovered from the Blake Ridge, Northwest Atlantic[C]//PAULL C K, MATSUMOTO R, WALLACE P J, et al. Proceedings of the Ocean Drilling Program, Scientific Results. Texas:Texas A & M University, 2000, 164:13-28.
|
[8] |
KRIVCHIKOV A I, GORODILOV B Y, KOROLYUK O A, et al. Thermal conductivity of methane-hydrate[J]. Journal of Low Temperature Physics, 2005, 139(5/6):702-693.
|
[9] |
聂东冰, 张鹏, 马志伟, 等. 四丁基溴化铵水合物浆体热导率研究[J]. 低温与超导, 2010, 38(6):39-43. NIE D B, ZHANG P, MA Z W, et al. Measurement of thermal conductivity of TBAB clathrate hydrate slurry[J]. Cryogenics and Superconductivity, 2010, 38(6):39-43.
|
[10] |
KYOSUKE F, YU N, YOSHIHIRO T, et al. Thermal conductivity measurements of semiclathrate hydrates and aqueous solutions of tetrabutylammonium bromide (TBAB) and tetrabutylammonium chloride (TBAC) by the transient hot-wire using parylene-coated probe[J]. Fluid Phase Equilibria, 2016, 413:129-136.
|
[11] |
HWANG Y J, AHN Y C, SHIN H S, et al. Investigation on characteristics of thermal conductivity enhancement of nanofluids[J]. Current Applied Physics, 2006, 6(6):1086-1071.
|
[12] |
YAN H Y, TANG Y X, LONG W, et al. Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets[J]. Mater. Sci., 2014, 49(15):5256-5264.
|
[13] |
武卫东, 唐恒博, 苗鹏柯, 等. 空调用纳米有机复合相变蓄冷材料制备与热物性[J]. 化工学报, 2015, 66(3):1208-1214. WU W D, TANG H B, MIAO P K, et al. Preparation and thermal properties of nano-organic composite phase change materials for cool storage in air-conditioning[J]. CHESC Journal, 2015, 66(3):1208-1214.
|
[14] |
GUSTAFSSON S E, KARAWACKI E, KHAN M N. Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids[J]. Journal of Physics. D:Applied Physics. 1979, 12(9):1411-1421.
|
[15] |
GUSTAFSSON S E, KARAWACKI E, CHOHAN M A. Thermal transport studies of electrically conducting materials using the transient hot-strip technique[J]. Journal of Physics. D:Applied Physics, 1986, 19(5):727-735.
|
[16] |
黄犊子, 樊栓狮. 采用HOTDISK测量材料热导率的实验研究[J]. 化工学报, 2003, 54(A1):67-70. HUANG D Z, FAN S S. Experimental study of thermal conductivity measurement with Hotdisk[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(A1):67-70.
|
[17] |
US Army Corps of Engineers. Engineering & Design-Ice[M]. EM 1110-2-1612, Washington D C, 1996.
|
[18] |
ROSSR G, ANDESSON P, BACKSTROM G. Unusual PT dependence of thermal conductivity for a clathrate hydrate[J]. Nature, 1981, 290(5804):322-323.
|
[19] |
WANG X J, LI X F, SHUO Y. Influence of pH and SDBS on the stability and thermal conductivity of nanofluids[J]. Energy & Fuels, 2009, 23(5):2684-2689.
|
[20] |
MAHAMMAD H E, ARASH K, YAN W L, et al. Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles[J]. International Journal of Heat and Mass Transfer, 2015, 58:728-734.
|
[21] |
AMIN A, MEISAM A, MARZIEH S, et al. The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles:an experimental investigation[J]. International Journal of Heat and Mass Transfer, 2017, 108:191-198.
|
[22] |
GRININ A P, RUSANOV A I, KUN D. Thermal conductivity of metal-oxide nanofluids:particle size dependence and effect of laser irradiation[J]. ASME Journal of Heat Transfer, 2007, 129:298-307.
|
[23] |
ZHOU X F, GAO L. Thermal conductivity of metal-oxide nanofluids:effect of grade nanolayers and mutual interaction[J]. Journal of Applied Physics, 2008, 103:083503.
|
[24] |
徐小娇. 纳米流体中CO2中水合物的生成特性与相平衡实验研究[D]. 上海:上海理工大学, 2013. XU X J. Experimental study on characteristics of CO2 hydrate formation and phase equilibrium in nanofluids[D]. Shanghai:University of Shanghai for Science and Technology, 2013.
|
[25] |
宣益民, 李强. 纳米流体能量传递理论与应用[M]. 北京:科学出版社, 2010. XUAN Y M, LI Q. Energy Transfer Theory and Application of Nanofluids[M]. Beijing:Science Press, 2010.
|
[26] |
MAXWELL J C. Electricity and Magnetism:partⅡ[M]. 3rd ed. London:Clarendon Press, 1904.
|