CIESC Journal ›› 2022, Vol. 73 ›› Issue (5): 2262-2269.DOI: 10.11949/0438-1157.20211816
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Xingda SHI1,2(),Huayan CHEN1,2(),Yanan GE1,2,Chunrui WU1,2,Hongyou JIA1,2,Xiaolong LYU1,2
Received:
2021-12-23
Revised:
2022-01-24
Online:
2022-05-24
Published:
2022-05-05
Contact:
Huayan CHEN
石兴达1,2(),陈华艳1,2(),戈亚南1,2,武春瑞1,2,贾红友1,2,吕晓龙1,2
通讯作者:
陈华艳
作者简介:
石兴达(1995—),男,硕士研究生,基金资助:
CLC Number:
Xingda SHI, Huayan CHEN, Yanan GE, Chunrui WU, Hongyou JIA, Xiaolong LYU. Construction of three-dimensional network by modified MWCNT and AlN fillings in PVDF to improve the thermal conductivity[J]. CIESC Journal, 2022, 73(5): 2262-2269.
石兴达, 陈华艳, 戈亚南, 武春瑞, 贾红友, 吕晓龙. 低界面热阻改性氮化铝和多壁碳纳米管充填PVDF构建杂化三维网络及其导热性能强化[J]. 化工学报, 2022, 73(5): 2262-2269.
Add to citation manager EndNote|Ris|BibTeX
1 | Xiao C, Leng X Y, Zhang X, et al. Improved thermal properties by controlling selective distribution of AlN and MWCNT in immiscible polycarbonate (PC)/Polyamide 66 (PA66) composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 110: 133-141. |
2 | Zeng X L, Yao Y M, Gong Z Y, et al. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small (Weinheim an Der Bergstrasse, Germany), 2015, 11(46): 6205-6213. |
3 | Gu J W, Guo Y Q, Lv Z Y, et al. Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 95-101. |
11 | 涂友雷. PVDF/BN导热绝缘复合材料制备与性能研究[D]. 合肥: 安徽大学, 2019. |
Tu Y L. Preparation and properties of PVDF / BN thermal conductive and insulating composites[D]. Hefei: Anhui University, 2019. | |
4 | Ahn K, Kim K, Kim M, et al. Fabrication of silicon carbonitride-covered boron nitride/Nylon 6, 6 composite for enhanced thermal conductivity by melt process[J]. Ceramics International, 2015, 41(2): 2187-2195. |
5 | Wu X N, Ji H F, Wang Z, et al. Preparation and properties of thermally conductive epoxy resin/boron nitride composites[J]. Digest Journal of Nanomaterials and Biostructures, 2018, 13(4): 977-990. |
6 | Guo H, Wang Q, Liu J, et al. Improved interfacial properties for largely enhanced thermal conductivity of poly(vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes[J]. Applied Surface Science, 2019, 487: 379-388. |
12 | Shtein M, Nadiv R, Buzaglo M, et al. Thermally conductive graphene-polymer composites: size, percolation, and synergy effects[J]. Chemistry of Materials, 2015, 27(6): 2100-2106. |
13 | Chen Y M, He X M, Wu Y, et al. Effects of surface-functionalized aluminum nitride on thermal, electrical, and mechanical behaviors of polyarylene ether nitrile-based composites[J]. Polymer Composites, 2016, 37(10): 3033-3041. |
14 | Tong Z, Liu M, Bao H. A numerical investigation on the heat conduction in high filler loading particulate composites[J]. International Journal of Heat and Mass Transfer, 2016, 100: 355-361. |
7 | Xu Y S, Chung D D L. Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments[J]. Composite Interfaces, 2000, 7(4): 243-256. |
8 | Hahn B D, Kim Y, Ahn C W, et al. Fabrication and characterization of aluminum nitride thick film coated on aluminum substrate for heat dissipation[J]. Ceramics International, 2016, 42(16): 18141-18147. |
9 | Cao M, Du C Y, Guo H, et al. Continuous network of CNTs in poly(vinylidene fluoride) composites with high thermal and mechanical performance for heat exchangers[J]. Composites Science and Technology, 2019, 173: 33-40. |
15 | 虞锦洪. 高导热聚合物基复合材料的制备与性能研究[D]. 上海: 上海交通大学, 2012. |
Yu J H. Preparation and properties of high thermal conductivity polymer matrix composites[D]. Shanghai: Shanghai Jiao Tong University, 2012. | |
16 | Gojny F H, Wichmann M H G, Fiedler B, et al. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites[J]. Polymer, 2006, 47(6): 2036-2045. |
17 | Hong J, Lee J, Hong C K, et al. Effect of dispersion state of carbon nanotube on the thermal conductivity of poly(dimethyl siloxane) composites[J]. Current Applied Physics, 2010, 10(1): 359-363. |
10 | Hu B Y, Guo H, Wang Q, et al. Enhanced thermal conductivity by constructing 3D-networks in poly(vinylidene fluoride) composites via positively charged hexagonal boron nitride and silica coated carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing, 2020, 137: 106038. |
18 | Kim W, Bae J W, Choi I D, et al. Thermally conductive EMC (epoxy molding compound) for microelectronic encapsulation[J]. Polymer Engineering & Science, 1999, 39(4): 756-766. |
19 | Hsieh C Y, Chung S L. High thermal conductivity epoxy molding compound filled with a combustion synthesized AlN powder[J]. Journal of Applied Polymer Science, 2006, 102(5): 4734-4740. |
20 | Xu Y S, Chung D D L, Mroz C. Thermally conducting aluminum nitride polymer-matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(12): 1749-1757. |
21 | Dang T M L, Kim C Y, Zhang Y M, et al. Enhanced thermal conductivity of polymer composites via hybrid fillers of anisotropic aluminum nitride whiskers and isotropic spheres[J]. Composites Part B: Engineering, 2017, 114: 237-246. |
22 | Yu J H, Duan J K, Peng W Y, et al. Influence of nano-AlN particles on thermal conductivity, thermal stability and cure behavior of cycloaliphatic epoxy/trimethacrylate system[J]. Express Polymer Letters, 2011, 5(2): 132-141. |
23 | Chiavarino B, Crestoni M E, Dopfer O, et al. Benzylium versus tropylium ion dichotomy: vibrational spectroscopy of gaseous C8H9 + ions[J]. Angewandte Chemie, 2012, 51(20): 4947-4949. |
24 | Lee J I, Yang S B, Jung H T. Carbon nanotubes-polypropylene nanocomposites for electrostatic discharge applications[J]. Macromolecules, 2009, 42(21): 8328-8334. |
25 | Song S S, Cao M, Shan H T, et al. Polyhedral oligomeric silsesquioxane functionalized carbon nanotubes for high thermal conductive poly(vinylidene fluoride) composite membrane[J]. Materials & Design, 2018, 156: 242-251. |
26 | Swartz E, Pohl R. Thermal boundary resistance[J]. Reviews of Moden Physics, 1989, 61(3): 605-668. |
27 | Cahill D G, Braun P V, Chen G, et al. Nanoscale thermal transport. Ⅱ. 2003—2012[J]. Applied Physics Reviews, 2014, 1(1): 011305. |
28 | Zeng S, Su Q, Zhang L Z. Molecular-level evaluation and manipulation of thermal conductivity, moisture diffusivity and hydrophobicity of a GO-PVP/PVDF composite membrane[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119508. |
29 | Zhang L Z, Wang X J, Quan Y Y, et al. Conjugate heat conduction in filled composite materials considering interactions between the filler and base materials[J]. International Journal of Heat & Mass Transfer, 2013, 64: 735-742. |
30 | Chen Y, Ping C. Heat transfer and pressure drop in fractal tree-like microchannel nets[J]. International Journal of Heat & Mass Transfer, 2002, 45(13): 2643-2648. |
31 | Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume[J]. International Journal of Heat & Mass Transfer, 1997, 40(4): 799-811. |
[1] | Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981. |
[2] | Huan XU, Lyu KE, Shenghui ZHANG, Zilin ZHANG, Guangdong HAN, Jinsheng CUI, Daoyuan TANG, Donghui HUANG, Jiefeng GAO, Xinjian HE. Upgrading dispersion and interfacial morphologies for thermally conductive polypropylene composites by in situ growth of carbon nanotubes at graphene oxide [J]. CIESC Journal, 2022, 73(11): 5150-5157. |
[3] | LIANG Heng, LIU Yicai, WANG Qianxu, ZHAO Xiangle, LI Zheng. Research progress of effective thermal conductivity of open-cell foam metal composites [J]. CIESC Journal, 2021, 72(S1): 7-20. |
[4] | YANG Zhen, YAO Yuanpeng, WU Huiying. Analysis on thermal conduction characteristics of metal foam based on conduction form factor [J]. CIESC Journal, 2021, 72(3): 1295-1301. |
[5] | WEI Juan, WANG Yujun, LUO Guangsheng. Influence of pore volume and heating process on preparation of aluminum nitride powder by carbothermal reduction method [J]. CIESC Journal, 2021, 72(2): 1156-1168. |
[6] | Huizhong ZHAO, Min LEI, Tianhou HUANG, Tao LIU, Min ZHANG. Water vapor adsorption performance of composite adsorbent MWCNT/MgCl2 [J]. CIESC Journal, 2020, 71(S1): 272-281. |
[7] | Dongmin TIAN, Yanpeng WU, Fengjun CHEN. Analysis of heat transfer performance of copper-water heat pipe based on nano enhanced-PCM [J]. CIESC Journal, 2020, 71(S1): 220-226. |
[8] | Yan SHI, Junwen ZHAO, Yanping YUAN, Guangze DAI, Jing HAN. Effect of Cu content on phase change thermal storage properties of Al-Cu-Si alloy [J]. CIESC Journal, 2020, 71(5): 2017-2023. |
[9] | Ming LIU, Zhe XU. Phonon heat conduction and quantum correction of methane hydrate [J]. CIESC Journal, 2020, 71(4): 1424-1431. |
[10] | Zepei YU, Yanhui FENG, Daili FENG, Xinxin ZHANG. Thermal conductivity of three dimensional graphene-carbon nanotubes hybrid structure: molecular dynamics simulation [J]. CIESC Journal, 2020, 71(4): 1822-1827. |
[11] | Yixin MA, Yu JIN, Hu ZHANG, Xian WANG, Guihua TANG. Experimental study on heat transfer performance of finned gravity heat pipe [J]. CIESC Journal, 2020, 71(2): 594-601. |
[12] | Wanqiang LIU,Fan YANG,Hua YUAN,Yuanda ZHANG,Pinggui YI,Hu ZHOU. Molecular dynamics simulation and mechanism study on thermal conductivity of alcohols [J]. CIESC Journal, 2020, 71(11): 5159-5168. |
[13] | Dexin HOU,Yue CHEN,Shuliang YE. Measurement of in-plane thermal conductivity of glued graphite film based on thermal imaging [J]. CIESC Journal, 2019, 70(S2): 76-84. |
[14] | Fan YU,Xinxin ZHANG. Analysis and experiments of measuring thermal conductivity and diffusivity of materials by plane source-pulse transient method [J]. CIESC Journal, 2019, 70(S2): 70-75. |
[15] | Qiuhui YAN,Xiaoyang SUN,Jieren LUO,Zhiju WU. Study on modification of glass wool/SiO2 aerogel combined board [J]. CIESC Journal, 2019, 70(S2): 363-368. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||