[1] |
CHENG L, LIU W, HOU Z G, et al. Neural network based nonlinear model predictive control for piezoelectric actuators [J]. IEEE Transactions on Industrial Electronics, 2015, 62 (12): 1-1.
|
[2] |
ZHAO C H, WANG F L, GAO F R, et al. Adaptive monitoring method for batch processes based on phase dissimilarity updating with limited modeling data [J]. Industrial & Engineering Chemistry Research, 2007, 46 (14): 4943-4953.
|
[3] |
FENG K, LU J, CHEN J. Nonlinear model predictive control based on support vector machine and genetic algorithm [J]. Chinese Journal of Chemical Engineering, 2015, 23 (12): 2048-2052.
|
[4] |
ZHAO C H, WANG F L, LU N Y, et al. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes [J]. Journal of Process Control, 2007, 17 (9): 728-741.
|
[5] |
LIU Z T, FENG Z H. Research on two-dimensional landslide model control system based on support vector machine modeling [J]. Applied Mechanics & Materials, 2014, 580-583: 947-953.
|
[6] |
LIU R L. Modeling soft sensor based on support vector machine and particle swarm optimization algorithms [J]. Control Theory & Applications, 2006, 23 (6): 895-894.
|
[7] |
ZHAO C H, GAO F R. Online fault prognosis with relative deviation analysis and vector autoregressive modeling [J]. Chemical Engineering Science, 2015, 138 (22): 531-543.
|
[8] |
ZHANG X, LI Y, KANO M. Quality prediction in complex batch processes with just-in-time learning model based on non-Gaussian dissimilarity measure [J]. Industrial & Engineering Chemistry Research, 2015, 54 (31): 7694-7705.
|
[9] |
綦欢, 叶贞成, 钱锋,等. 乙烯裂解炉燃料气消耗的实时优化 [J]. 计算机与应用化学, 2015, 32 (12): 1457-1461.QI H, YE Z C, QIAN F, et al. Real-time optimization for fuel gas consumption of ethylene cracking furnace [J]. Computers and Applied Chemistry, 2015, 32 (12): 1457-1461.
|
[10] |
周丽春, 靳鑫, 刘毅,等. 即时局部建模在填料塔液泛气速预测的应用 [J]. 化工学报, 2016, 67 (3): 1070-1075.ZHOU L C, XIN X, LIU Y, et al. Just-in-time local modeling for flooding velocity prediction in packed towers [J]. CIESC Journal, 2016, 67 (3): 1070-1075.
|
[11] |
罗健旭, 邵惠鹤. 应用多神经网络建立动态软测量模型 [J]. 化工学报, 2003, 54 (12): 170-177.LUO J X, SHAO H H. Developing eveloping dynamic soft sensors using multiple neural networks [J]. Journal of Chemical Industry and Engineering (China), 2003, 54 (12): 170-177.
|
[12] |
DU W L, GUAN Z Q, QIAN F. The time series soft-sensor modeling based on Adaboost LS-SVM[C]//The 8th World Congress on Intelligent Control and Automation (WCICA),Jinan, 2010: 1491-1495.
|
[13] |
WANG H Q, LI P, GAO F R, et al. Kernel classifier with adaptive structure and fixed memory for process diagnosis [J]. AIChE Journal, 2006, 52 (10): 3515-3531.
|
[14] |
BONTEMPI G, BIRATTARI M, BERSINI H. Lazy learning for local modeling and control design [J]. International Journal of Control,1999, 72 (7/8): 643-658.
|
[15] |
USHIDA S, KIMURA H. Just-in-time approach to nonlinear identification and control [J]. Journal of SICE, 2005, 44 (2): 102-106.
|
[16] |
PAN T H, LI S Y, WANG X. A multi-model modeling approach to nonlinear systems based on lazy learning[C]//Proceedings of the 24th Chinese Control Conference. 2005: 268-73.
|
[17] |
LIU Y, GAO Z L, LI P, et al. Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes [J]. Industrial and Engineering Chemistry Research, 2012, 51 (11): 4313-4327.
|
[18] |
SU Q L, MARTIN W H, RICHARD D B, et al. Just-in-time-learning based extended prediction self-adaptive control for batch processes [J]. Journal of Process Control, 2016, 43: 1-9.
|
[19] |
LIMA L R P D A, HODOUIN D. Simulation study of the optimal distribution of cyanide in a gold leaching circuit [J]. Minerals Engineering, 2006, 19 (13): 1319-1327.
|
[20] |
LIAM L R P D A. Some remarks on the reactor network synthesis for gold cyanidation [J]. Minerals Engineering, 2006, 19 (2): 154-161.
|
[21] |
HU G, MAO Z Z, HE D K, et al. Hybrid modeling for the prediction of leaching rate in leaching process based on negative correlation learning bagging ensemble algorithm [J]. Computers & Chemical Engineering, 2011, 35 (12): 2611-2617.
|
[22] |
LIU Y, WAN H Q, LI P. Adaptive local learning based least squares support vector regression with application to online modeling for fermentation processes [J]. Journal of Chemical Industry and Engineering, 2008, 59 (8): 2053-2057.
|
[23] |
GE Z Q, SONG Z H. A comparative study of just-in-time-learning based methods for online soft sensor modeling [J].Chemometrics and Intelligent Laboratory Systems, 2010, 104 (2): 306-317.
|
[24] |
NIU D P, SUN Y, WANG F L. Optimization of advertising budget allocation over time based on LS-SVMR and DE [J]. Automation Science & Engineering IEEE Transactions on, 2014, 10 (4): 1076-1082.
|
[25] |
LIN W Q, JIAN-ZHONG F U, YA-ZHOW X U, et al. Thermal error modeling & compensation of numerical control machine tools based on on-line least squares support vector machine [J]. Computer Integrated Manufacturing Systems, 2008, 14 (2): 295-299.
|
[26] |
SUN L, YU F, ZHANG D, et al. Online modeling for wood drying based on least squares support vector machine [J]. Chinese Journal of Scientific Instrument, 2009, 30 (9): 1991-1995.
|
[27] |
SERAFINI T, ZANGHIRATI G, ZANNI L. Gradient projection methods for quadratic programs and applications in training support vector machines [J]. Optimization Methods & Software, 2005, 20 (2/3): 353-378.
|
[28] |
葛志强, 刘毅, 宋执环. 一种基于局部模型的非线性多工况过程检测方法 [J]. 自动化学报, 2008, 34 (7): 792-797.GE Z Q, LIU Y, SONG Z H. Local model based monitoring for nonlinear multiple mode process [J]. Acta Automatica Sinica, 2008, 34 (7): 792-797.
|
[29] |
刘毅, 金福江, 高增梁. 时变过程在线辨识的即时递推核学习研究 [J]. 自动化学报, 2013, 39 (5): 602-609.LIU Y, JIN F J, GAO Z L. Online identification of time-varying processes using just-in-time recursive kernel learning approach [J]. Acta Automatica Sinica, 2013, 39 (5): 602-609.
|
[30] |
孙维, 王伟, 朱瑞军. 即时学习算法在非线性系统迭代学习控制中的应用 [J]. 控制与决策, 2003, 18 (3): 263-266.SUN W, WANG W, ZHU R J. Iterative learning control for nonlinear system using lazy learning method [J]. Control and Decision, 2003, 18 (3): 263-266.
|