CIESC Journal ›› 2017, Vol. 68 ›› Issue (7): 2873-2879.DOI: 10.11949/j.issn.0438-1157.20161803

Previous Articles     Next Articles

Modeling hydrometallurgical leaching process based on improved just-in-time learning algorithm

NIU Dapeng, LIU Yuanqing   

  1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, Liaoning, China
  • Received:2016-12-23 Revised:2017-03-24 Online:2017-07-05 Published:2017-07-05
  • Contact: 10.11949/j.issn.0438-1157.20161803
  • Supported by:

    supported by the National Natural Science Foundation of China (61673092, 61304121, 61533007) and the Fundamental Research Funds for the Central Universities (N150404017).

基于改进即时学习算法的湿法冶金浸出过程建模

牛大鹏, 刘元清   

  1. 东北大学信息科学与工程学院, 辽宁 沈阳 110819
  • 通讯作者: 牛大鹏
  • 基金资助:

    国家自然科学基金项目(61673092,61304121,61533007);中央高校基本科研业务费专项资金(N150404017)。

Abstract:

Least squares support vector machine (LS-SVM) based on just-in-time (JIT) learning algorithm was used to build prediction model of leaching rate, when considered multi-variable multi-mode nonlinear characteristics of hydrometallurgical leaching process. Time order was introduced into selection rule of JIT learning set for the determination of modeling neighborhood of current operating point, so as to improve modelling accuracy. A cumulative similarity factor was adopted to improve real-time performance of the model and an adaptive similarity threshold was used to determine necessity of updating local model of the current operating point. The simulation results for hydrometallurgical leaching process show that the improved modeling method has high precision and good real-time performance in leaching rate prediction, which can be used in hydrometallurgical industrial production.

Key words: hydrometallurgy, leaching process, just-in-time learning algorithm, least squares support vector machine, time order, cumulative similarity factor

摘要:

针对湿法冶金浸出过程中存在的多变量、非线性和多工况等问题,采用基于即时学习算法的最小二乘支持向量机建立浸出率的预测模型。将时间有序性引入到即时学习算法学习集的选取规则中以确定系统当前工作点的建模邻域,从而提高模型精度;引入累计相似因子以提高所建模型的实时性,并利用自适应相似度阈值来判定是否需要重新建立当前工作点的局部模型。将改进的建模方法应用到湿法冶金浸出过程浸出率的预测中,仿真结果表明,所建模型具有较高的精度和实时性,可用于湿法冶金工业生产过程。

关键词: 湿法冶金, 浸出过程, 即时学习算法, 最小二乘支持向量机, 时间有序性, 累计相似因子

CLC Number: