CIESC Journal ›› 2018, Vol. 69 ›› Issue (4): 1437-1444.DOI: 10.11949/j.issn.0438-1157.20170122
Previous Articles Next Articles
NING Jinghong, LIU Shengchun
Received:
2017-02-07
Revised:
2017-10-16
Online:
2018-04-05
Published:
2018-04-05
Supported by:
supported by the National Natural Science Foundation of China (51376137).
宁静红, 刘圣春
通讯作者:
宁静红
基金资助:
国家自然科学基金项目(51376137)。
CLC Number:
NING Jinghong, LIU Shengchun. Performance analysis on direct contact condensation refrigeration cycle of high temperature gas with super-cooled liquid[J]. CIESC Journal, 2018, 69(4): 1437-1444.
宁静红, 刘圣春. 高温气体与过冷液直接接触凝结制冷循环的性能分析[J]. 化工学报, 2018, 69(4): 1437-1444.
[1] | Mahood H B, Thorpe R B, Campbell A N, et al. Experimental measurements and theoretical prediction for the transient characteristic of a two-phase two-component direct contact condenser[J]. Applied Thermal Engineering, 2015, 87(1):161-174. |
[2] | Mahood H B, Campbell A N, Thorpe R B, et al. Heat transfer efficiency and capital cost evaluation of a three-phase direct contact heat exchanger for the utilisation of low-grade energy sources[J]. Energy Conversion and Management, 2015, 106(9):101-109. |
[3] | Wang W, Li H, Guo S, et al. Numerical simulation study on discharging process of the direct-contact phase change energy storage system[J]. Applied Energy, 2015, 150(3):61-68. |
[4] | 李晓燕, 杜世强. 直接接触式空调蓄冷技术的研究进展[J]. 建筑热能通风空调, 2014, 33(5):41-46. LI X Y, DU S Q. Research progress of direct contact air conditioning cold storage technology[J]. Building Energy and Environment, 2014, 33(5):41-46. |
[5] | Mizonov V, Yelin N, Yakimychev P. A cell model to describe and optimize heat and mass transfer in contact heat exchangers[J]. Energy and Power Engineering, 2011, 3(2):144-149. |
[6] | Quan X, Geng Y, Yuan P, et al. Experiment and simulation of the shrinkage of falling film upon direct contact with vapor[J]. Chemical Engineering Science, 2015, 135(6):52-60. |
[7] | Dahikar S K, Sathe M J, Joshi J B. Investigation of flow and temperature patterns in direct contact condensation using PIV, PLIF and CFD[J]. Chemical Engineering Science, 2010, 65(16):4606-4620. |
[8] | Kim Y S, Park J W, Song C H. Investigation of the stem-water direct contact condensation heat transfer coefficients using interfacial transport models[J]. International Communications in Heat and Mass Transfer, 2004, 31(3):397-408. |
[9] | Shah A, Chughtai I R, Inayat M H. Experimental and numerical investigation of the effect of mixing section length on direct-contact condensation in steam jet pump[J]. International Journal of Heat and Mass Transfer, 2014, 72(2):430-439. |
[10] | Kadi R, Aissani S, Bouam A. Numerical simulation of the direct contact condensation phenomena for PTS-related in single and combined-effect thermal hydraulic test facilities using TransAT CMFD code[J]. Nuclear Engineering and Design, 2015, 293 (9):346-356. |
[11] | LI S Q, WANG P, LU T. Numerical simulation of direct contact condensation of subsonic steam injected in a water pool using VOF method and LES turbulence model[J]. Progress in Nuclear Energy, 2014, 78(1):201-215. |
[12] | 李树谦, 卢涛, 邱庆刚. T型圆管内蒸汽直接接触冷凝数值模拟[J]. 热科学与技术, 2016, 15(1):33-39. LI S Q, LU T, QIU Q G. Simulation of direct contact condensation in tee junction[J]. Journal of Thermal Science and Technology, 2016, 15(1):33-39. |
[13] | Choi K Y, Chung H J, No H C. Direct-contact condensation heat transfer model in RELAP5/MOD3.2 with/without noncondensable gases for horizontally stratified flow[J]. Nuclear Engineering and Design, 2002, 211(2/3):139-151. |
[14] | 李刚, 袁益超, 刘聿拯. 基于直接接触凝结理论的汽液两相流升压模型[J]. 上海理工大学学报, 2008, 30(4):307-310. LI G, YUAN Y C, LIU Y Z. Model of steam-water two-phase flow lifting-pressure mechanism based on direct contact condensation[J]. Journal of University of Shanghai for Science and Technology, 2008, 30(4):307-310. |
[15] | Xu J, Xiao Q, Fei Y, et al. Accurate estimation of mixing time in a direct contact boiling heat transfer process using statistical methods[J]. International Communications in Heat and Mass Transfer, 2016, 75(4):162-168. |
[16] | Khan A, Sanaullah K, Takriff M S, et al. Pressure stresses generated due to supersonic steam jet induced hydrodynamic instabilities[J]. Chemical Engineering Science, 2016, 146(2):44-63. |
[17] | Heinze D, Schulenberg T, Behnke L. A physically based, one-dimensional three-?uid model for direct contact condensation of steam jets in ?owing water[J]. International Journal of Heat and Mass Transfer, 2016, 106(3):1041-1050. |
[18] | Li S Q, Wang P, Lu T. CFD based approach for modeling steam-water direct contact condensation in subcooled water flow in a tee junction[J]. Progress in Nuclear Energy, 2015, 85(11):729-746. |
[19] | Xu Q, Guo L, Chang L, et al. Velocity field characteristics of the turbulent jet induced by direct contact condensation of steam jet in crossflow of water in a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2016, 103(11):305-318. |
[20] | CLERX N, GELD C W M V D, KUERTEN J G M. Turbulent stresses in a direct contact condensation jet in cross-flow in a duct with implications for particle break-up[J]. International Journal of Heat and Mass Transfer, 2013, 66(6):684-694. |
[21] | Gupta L. Direct contact condensation of steam jet in crossflow of water in a vertical pipe(Ⅰ):Experimental investigation on condensation regime diagram and jet penetration length[J]. International Journal of Heat and Mass Transfer, 2015, 94(1):528-538. |
[22] | Xu Q, Guo L, Zou S, et al. Experimental study on direct contact condensation of stable steam jet in water flow in a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2013, 66(6):808-817. |
[23] | Park H S, Choi S W, No H C. Direct-contact condensation of pure steam on co-current and counter-current stratified liquid flow in a circular pipe[J]. International Journal of Heat and Mass Transfer, 2009, 52(5/6):1112-1122. |
[24] | Zong X, Liu J P, Yang X P, et al. Experimental study on the direct contact condensation of steam jet in subcooled water flow in a rectangular mix chamber[J]. International Journal of Heat and Mass Transfer, 2015, 80(1):448-457. |
[25] | Wu X Z, Liu J P, Zong X, et al. Experimental study on the direct contact condensation of the steam jet in subcooled water in a rectangular channel:flow patterns and ?ow ?eld[J]. International Journal of Heat and Fluid Flow, 2015, 56(12):172-181. |
[26] | Srbislav B G. Direct-contact condensation heat transfer on downcommerless trays for steam-water system[J]. International Journal of Heat and Mass Transfer, 2006, 49(7):1225-1230. |
[27] | Davis J, Yadigaroglu G. Direct contact condensation in Hiemenz flow boundary layers[J]. International Journal of Heat and Mass Transfer, 2004, 47(8/9):1863-1875. |
[28] | Ju S H, No H C, Mayinger F. Measurement of heat transfer coefficients for direct contact condensation in core makeup tanks using holographic interferometer[J]. Nuclear Engineering and Design, 2000, 199(1):75-83. |
[29] | 屈晓航, 田茂诚, 张冠敏, 等. 含不凝气体蒸汽泡直接接触冷凝[J]. 化工学报, 2014, 65(12):4749-4754. QU X H, TIAN M C, ZHANG G M, et al. Direct contact condensation of steam bubbles with non-condensable gas[J]. CIESC Journal, 2014, 65(12):4749-4754. |
[30] | 李涛, 宗潇, 杨小平, 等. 矩形通道内高速蒸汽与过冷水直接接触凝结换热流型的实验研究[J]. 西安交通大学学报, 2014, 48(5):50-55. LI T, ZONG X, YANG X P, et al. Experimental study on flow patterns of direct contact condensation between steam jet and subcooled water flow in rectangular channel[J]. Journal of Xi'an Jiaotong University, 2014, 48(5):50-55. |
[31] | 杨小平, 陈旖, 李涛, 等. 蒸汽空气混合物与过冷水直接接触凝结研究[J]. 工程热物理学报, 2015, 36(11):2493-2497. YANG X P, CHEN Y, LI T, et al. Research on direct contact condensation of steam-air mixture in subcooled water[J]. Journal of Engineering Thermophysics, 2015, 36(11):2493-2497. |
[32] | 宁静红, 曾凡星. CO2为低温循环工质的复叠式制冷系统的分析比较[J]. 热科学与技术, 2015, 14(2):155-160. Ning J H, Zeng F X. Analysis and comparison on cascade refrigeration system for CO2 low-temperature circuit[J]. Journal of Thermal Science and Technology, 2015, 14(2):155-160. |
[1] | LI Peiyun, LI Yang, WANG Wenbin, WANG Wen. Application analysis of Wankel expander in CO2 trans-critical refrigeration cycle [J]. CIESC Journal, 2021, 72(S1): 161-169. |
[2] | Chaohe DENG, Jiayun WANG, Jinfeng LI, Yefeng LIU, Ruzhu WANG. Preparation and adsorption / desorption performance of hydrogel-based composite sorbent driven by low-temperature [J]. CIESC Journal, 2021, 72(8): 4401-4409. |
[3] | Haibo LI, Maocheng TIAN, Xiaohang QU. Numerical investigation of influence of non-condensable gas on steam jet condensation [J]. CIESC Journal, 2020, 71(S2): 135-141. |
[4] | Linzhen QIU, Bo GU, Menghua MIAO. Calculation model and analysis of thermodynamic properties of R32 refrigerant [J]. CIESC Journal, 2019, 70(6): 2075-2082. |
[5] | Minghan ZHU, Pengfei BAI, Yanxin HU, Jin HUANG. Heat transfer performance of ultra-thin plate heat pipe with sintered porous channels structures wick [J]. CIESC Journal, 2019, 70(4): 1349-1357. |
[6] | Shaojing WANG, Linlin LIU, Lei ZHANG, Jian DU, Kaiyi WU. Conceptual design, simulation and analysis of novel AP-XTM system integrated with NGL recovery process for large-scale LNG plant [J]. CIESC Journal, 2019, 70(2): 508-515. |
[7] | LIN Liguan, DAI Yanjun, HAFNER Armin. Performance of R744 commercial centralized refrigeration systems [J]. CIESC Journal, 2018, 69(S2): 394-401. |
[8] | NING Jinghong, LIU Shengchun. Performance analysis on R744 direct contact condensation refrigeration cycle [J]. CIESC Journal, 2018, 69(5): 2049-2056. |
[9] | TIAN Hua, JING Dongzhan, WANG Xuan, LIU Peng, YU Zhigang. Part-load performance analysis of cogeneration system for engine waste heat recovery [J]. CIESC Journal, 2018, 69(2): 792-800. |
[10] | ZHANG Dong, LI Jinping, ZHANG Han. All operation mathematical model and thermal performance analysis on combined heating power and biogas system [J]. CIESC Journal, 2017, 68(5): 1998-2008. |
[11] | YUAN Wei, SHI Tiejun, QIAN Ying, CHEN Yang. Preparation and properties of norbornene-imide-functionalized bis-benzoxazine [J]. CIESC Journal, 2016, 67(11): 4899-4905. |
[12] | LUO Huilong, LIN Bianqi, DU Peijian, YANG Xiaochuan, MA Ruifang, XIANG Kaigen. Investigation of operational performance of high power CO2 heat pump hot water system [J]. CIESC Journal, 2015, 66(6): 2274-2279. |
[13] | HE Lijuan, LIANG Jingjing, ZHU Chaoqun, WANG Zheng. Performance of new absorption refrigeration system driven bydouble low-grade energy [J]. CIESC Journal, 2015, 66(12): 5096-5102. |
[14] | LIU Malin. Review on application of fluidized bed technology in industry of uranium fuel cycle [J]. Chemical Industry and Engineering Progree, 2013, 32(03): 508-514. |
[15] | LI Jianbo, XU Shiming, KONG Shaokang. Steady state characteristics of absorption-compression hybrid refrigeration cycle [J]. CIESC Journal, 2012, 63(S2): 8-13. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 891
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 403
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||