[1] IMRAN S, EMBERSON D R. Natural gas fueled compression ignition engine performance and emissions maps with diesel and RME pilot fuels[J]. Applied Energy, 2014, 124:354-365.
[2] 柴俊霖, 田瑞, 杨富斌, 等. 车用柴油机余热回收有机朗肯循环系统方案热经济性对比分析[J]. 化工学报, 2017, 68(8):3258-3265. CHAI J L, TIAN R, YANG F B, et al. Thermo-economic comparative analysis of different organic Rankine cycle system schemes for vehicle diesel engine waste heat recovery[J]. CIESC Journal, 2017, 68(8):3258-3265.
[3] ZHOU F, JOSHI S N, RHOTE-VANEY R, et al. A review and future application of Rankine cycle to passenger vehicles for waste heat recovery[J]. Renewable & Sustainable Energy Reviews, 2016, 75:1008-1021.
[4] 杨凯, 张红光, 宋松松, 等. 变工况下车用柴油机排气余热有机朗肯循环回收系统[J]. 化工学报, 2015, 66(3):1097-1103. YANG K, ZHANG H G, SONG S S, et al. Waste heat organic Rankine cycle of vehicle diesel engine under variable working conditions[J]. CIESC Journal, 2015, 66(3):1097-1103.
[5] 李晓宁. 柴油机余热回收底循环系统及排气换热器设计与性能优化[D]. 天津:天津大学, 2014. LI X N. Research on design and performance optimization of diesel engine waste heat recovery bottoming system and key component[D]. Tianjin:Tianjin University, 2014.
[6] YU G P, SHU G Q, TIAN H, et al. Experimental investigations on a cascaded steam-/organic-Rankine-cycle (RC/ORC) system for waste heat recovery (WHR) from diesel engine[J]. Energy Conversion & Management, 2016, 129:43-51.
[7] WANG X, SHU G Q, TIAN H, et al. Dynamic analysis of the dual-loop organic Rankine cycle for waste heat recovery of a natural gas engine[J]. Energy Conversion & Management, 2017, 148:724-736.
[8] MAN Diesel & Turbo Co. Waste heat recovery system (WHRS) for reduction of fuel consumption, emissions and EEDI[EB/OL].[2012-12]. http://www.mandieselturbo.com/files/news/filesof16851/MDT_WHRS.pdf.
[9] HOSSAIN S N, BARI S. Waste heat recovery from the exhaust of a diesel generator using Rankine cycle[J]. Energy Conversion and Management, 2013, 75:141-151.
[10] DANIELA G, KONSTANTINOS S. Waste heat recovery from a landfill gas-fired power plant[J]. Renewable and Sustainable Energy Reviews, 2012, 16:1779-1789.
[11] SERRANO J R, DOLZ V, NOVELLA R, et al. HD diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system[J]. Applied Thermal Engineering, 2012, 36:279-287.
[12] DENG J, WANG R Z, HAN G Y. A review of thermally activated cooling technologies for combined cooling, heating and power systems[J]. Progress in Energy & Combustion Science, 2011, 37(2):172-203.
[13] JANNELLI E, MINUTILLO M, COZZOLINOR, et al. Thermodynamic performance assessment of a small size CCHP (combined cooling heating and power) system with numerical models[J]. Energy, 2014, 65(1):240-249.
[14] LIU M X, SHI Y, FANG F. Combined cooling, heating and power systems:a survey[J]. Renewable & Sustainable Energy Reviews, 2014, 35:1-22.
[15] HAN J, OUYANG L X, XU Y Z, et al. Current status of distributed energy system in China[J]. Renewable & Sustainable Energy Reviews, 2016, 55:288-297.
[16] LIANG Y C, SHU G Q, TIAN H, et al. Theoretical analysis of a novel electricity-cooling cogeneration system (ECCS) based on cascade use of waste heat of marine engine[J]. Energy Conversion and Management, 2014, 85:888-894.
[17] SHU G Q, WANG X, TIAN H, et al. Analysis of an electricity-cooling cogeneration system for waste heat recovery of gaseous fuel engines[J]. Science China Technological Sciences, 2015, 58:1674-7321.
[18] SUN L L, HAN W, JING X Y, et al. A power and cooling cogeneration system using mid/low-temperature heat source[J]. Applied Energy, 2013, 112:886-897.
[19] JIANG L, WANG L W, WANG R Z, et al. Investigation on cascading cogeneration system of ORC (organic Rankine cycle) and CaCl2/BaCl2 two-stage adsorption freezer[J]. Energy, 2014, 71:377-387.
[20] LI M, MU H L, LI N, et al. Optimal option of natural-gas district distributed energy systems for various buildings[J]. Energy and Building, 2014, 75:70-83.
[21] LI M, MU H L, LI N, et al. Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system[J]. Energy, 2016, 99:202-220.
[22] WANG J L, WU J Y, WANG H B. Experimental investigation of a dual-source powered absorption chiller based on gas engine waste heat and solar thermal energy[J]. Energy, 2015, 88:680-689.
[23] 郑剑娇, 郭培军, 隋军, 等. 烟气型吸收式制冷机的变工况特性研究[J]. 工程热物理学报, 2012, 33(8):1275-1278. ZHENG J J, GUO P J, SUI J, et al. Variable condition research of gas absorption chillers[J]. Journal of Engineering Thermophysics, 2012, 33(8):1275-1278.
[24] QUOILIN S, LEMORT V, LEBRUN J. Experimental study and modeling of an organic Rankine cycle using scroll expander[J]. Applied Energy, 2010, 87(4):1260-1268.
[24] SHU G Q, LIU P, TIAN H, et al. Operational profile based thermal-economic analysis on an organic Rankine cycle using for harvesting marine engine's exhaust waste heat[J]. Energy Conversion & Management, 2017, 146:107-123.
[25] HORST T A, ROTTENGRUBER H S, SEIFERTM, et al. Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems[J]. Applied Energy, 2013, 105(1):293-303.
[26] WEI D, LU X S, LU Z, et al. Dynamic modeling and simulation of an organic Rankine cycle (ORC) system for waste heat recovery[J]. Applied Thermal Engineering, 2008, 28(10):1216-1224.
[27] 舒歌群, 车家强, 田华, 等. 气体机排气驱动吸收式制冷机变工况调节特性[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(7):682-688. SHU G Q, CHE J Q, TIAN H, et al. Off-design regulation performance of absorption chiller driven by gas engine exhaust[J]. Journal of Tianjin University (Science and Technology), 2017, 50(7):682-688.
[28] SIDDIQI M, ATAKAN B. Alkanes as fluids in Rankine cycles in comparison to water, benzene and toluene[J]. Energy, 2012, 45:256-263.
[29] XU Y J, ZHANG S J, CHI J L, et al. Steady-state off-design thermodynamic performance analysis of a SCCP system[J]. Applied Energy, 2017, 2015, 90:221-231.
[30] WANG X, TIAN H, SHU G Q. Part-load performance prediction and operation strategy design of organic Rankine cycles with a medium cycle used for recovering waste heat from gaseous fuel engines[J]. Energies, 2016, 9:527.
[31] SHU G Q, CHE J Q, TIAN H, et al. A compressor-assisted triple-effect H2O-LiBr absorption cooling cycle coupled with a Rankine cycle driven by high-temperature waste heat[J]. Applied Thermal Engineering, 2017, 112:1626-1637. |