CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1349-1357.DOI: 10.11949/j.issn.0438-1157.20180720
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Minghan ZHU1(),Pengfei BAI2,Yanxin HU1,Jin HUANG1()
Received:
2018-07-03
Revised:
2019-01-10
Online:
2019-04-05
Published:
2019-04-05
Contact:
Jin HUANG
通讯作者:
黄金
作者简介:
<named-content content-type="corresp-name">朱明汉</named-content>(1994—),男,硕士研究生,<email>247650856@qq.com</email>|黄金(1975—),男,博士,教授,<email>gduthuangjin@126.com</email>
基金资助:
CLC Number:
Minghan ZHU, Pengfei BAI, Yanxin HU, Jin HUANG. Heat transfer performance of ultra-thin plate heat pipe with sintered porous channels structures wick[J]. CIESC Journal, 2019, 70(4): 1349-1357.
朱明汉, 白鹏飞, 胡艳鑫, 黄金. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180720
Wick structure | Porosity/% |
---|---|
copper powder 120—180 μm | 39.13 |
copper powder 75—120 μm | 34.56 |
copper powder 58—75 μm | 32.23 |
Table 1 Porosity of wick structure
Wick structure | Porosity/% |
---|---|
copper powder 120—180 μm | 39.13 |
copper powder 75—120 μm | 34.56 |
copper powder 58—75 μm | 32.23 |
1 | 王辉, 汤勇, 余建军 . 相变传热微通道技术的研究进展[J]. 机械工程学报, 2010, 46(24): 101-106. |
Wang H , Tang Y , Yu J J . Recent advances of the phase change micro-channel cooling structure[J]. Journal of Mechanical Engineering, 2010, 46(24): 101-106. | |
2 | Li J . Patents review for cooling of high power electronic components[J]. Recent Patents on Engineering, 2008, 2(2): 174-188. |
3 | Li J , Lv L C . Micro flat heat pipes for microelectronics cooling: review[J]. Recent Patents on Mechanical Engineering, 2013, 6(3): 120-127. |
4 | Marcinichen J B , Thome J R , Michel B . Cooling of microprocessors with micro-evaporation: a novel two-phase cooling cycle[J]. International Journal of Refrigeration, 2010, 33(7): 1264-1276. |
5 | 郝俊娇, 潘日, 周刚, 等 . 高热通量电子元件中热管散热技术的进展[J]. 化工进展, 2015, 34(5): 1220-1224. |
Hao J J , Pan R , Zhou G , et al . Development of heat pipe cooling technology in high heat flux electronic components[J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1220-1224. | |
6 | Marcinichen J , Olivier J , Lamaison N , et al . Advances in electronics cooling[J]. Heat Transfer Engineering, 2013, 34(56): 434-446. |
7 | 张程宾, 施明恒, 陈永平, 等 . “Ω”形轴向槽道热管的流动和传热特性[J]. 化工学报, 2008, 59(3): 544-550. |
Zhang C B , Shi M H , Chen Y P , et al . Flow and heat transfer characteristics of heat pipe with axial “Ω” -shaped grooves[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(3): 544-550. | |
8 | 林振玄, 马琦, 汪国山, 等 . 一种铜丝结构的新型微槽道平板热管[J]. 化工学报, 2010, 61(1): 27-31. |
Lin Z X , Ma Q , Wang G S , et al . Thermal performance of a new copper wire-bonded f at heat pipe[J]. CIESC Journal, 2010, 61(1): 27-31. | |
9 | Kempers R , Ewing D , Ching C Y . Effect of number of mesh layers and fluid loading on the performance of screen mesh wicked heat pipes[J]. Applied Thermal Engineering, 2006, 26(5/6): 589-595. |
10 | Lv L C , Li J . Managing high heat flux up to 500 W·cm-2 through an ultra-thin flat heat pipe with superhydrophilic wick[J]. Applied Thermal Engineering, 2017, 122: 593-600. |
11 | 纪献兵, 徐进良, Abanda A M , 等 . 超轻多孔泡沫金属平板热管的传热性能研究[J]. 中国电机工程学报, 2013, 33(2): 72-78. |
Ji X B , Xu J L , Abanda A M , et al . Investigation on heat transfer performance of flat heat pipes with ultra-light porous metal foam wicks[J]. Proceedings of the CSEE, 2013, 33(2): 72-78. | |
12 | Tang Y , Yuan D , Lu L S , et al . A multi-artery vapor chamber and its performance[J]. Applied Thermal Engineering, 2013, 60(1/2): 15-23. |
13 | 董梁, 徐伟强, 李倩倩 . 异形整体式热管散热器传热实验与分析[J]. 化工学报, 2016, 67(10): 4104-4110. |
Dong L , Xu W Q , Li Q Q . Experiment and simulation analysis of special-shaped overall heat pipe radiator[J]. CIESC Journal, 2016, 67(10): 4104-4110. | |
14 | Li Y , He H F , Zeng Z X . Evaporation and condensation heat transfer in a heat pipe with a sintered-grooved composite wick[J]. Applied Thermal Engineering, 2013, 50(1): 342-351. |
15 | Singh R , Akbarzadeh A , Mochizuki M , et al . Flat miniature heat pipe with composite fibre wick structure for cooling of mobile handheld devices[C]//ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems Collocated with the ASME 2005 Heat Transfer Summer Conference. San Francisco, California, USA, 2005: 409-414. |
16 | Tang Y , Deng D X , Lu L S , et al . Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera[J]. Experimental Thermal & Fluid Science, 2010, 34(2): 190-196. |
17 | Huang X , Franchi G . Design and fabrication of hybrid bi-modal wick structure for heat pipe application[J]. Journal of Porous Materials, 2008, 15(6): 635-642. |
18 | Zhou G H , Li J , Lv L C . An ultra-thin miniature loop heat pipe cooler for mobile electronics[J]. Applied Thermal Engineering, 2016, 109: 514-523. |
19 | 刘昌泉, 尚炜, 赵举贵, 等 . 纳米修饰吸液芯超薄平板热管的传热特性[J]. 化工学报, 2017, 68(12): 4508-4516. |
Liu C Q , Shang W , Zhao J G , et al . Heat transfer characteristics of ultra-thin flat heat pipe with nano-modified porous wick[J]. CIESC Journal, 2017, 68(12): 4508-4516. | |
20 | Lee D , Chan B . Fabrication and characterization of pure-metal-based submillimeter-thick flexible flat heat pipe with innovative wick structures[J]. International Journal of Heat & Mass Transfer, 2018, 122: 306-314. |
21 | Yang K S , Lin C C , Shyu J C , et al . Performance and two-phase flow pattern for micro flat heat pipes[J]. International Journal of Heat & Mass Transfer, 2014, 77: 1115-1123. |
22 | Mizuta K , Fukunaga R , Fukuda K , et al . Development and characterization of a flat laminate vapor chamber[J]. Applied Thermal Engineering, 2016, 104: 461-471. |
23 | Aoki H , Shioya N , Ikeda M , et al . Development of ultra thin plate-type heat pipe with less than 1 mm thickness[C]//26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. Japan : IEEE, 2010: 207-212. |
24 | Yang K S , Tu C W , Zhang W H , et al . A novel oxidized composite braided wires wick structure applicable for ultra-thin flattened heat pipes[J]. International Communications in Heat & Mass Transfer, 2017, 88: 84-90. |
25 | Li Y , Zhou W J , He J B , et al . Thermal performance of ultra-thin flattened heat pipes with composite wick structure[J]. Applied Thermal Engineering, 2016, 102: 487-499. |
26 | Lee K C , Chung S L . Ultra-thin heat pipe and manufacturing method thereof: US20100319882[P]. 2010-12-23. |
27 | Zhou W J , Xie P D , Li Y , et al . Thermal performance of ultra-thin flattened heat pipes[J]. Applied Thermal Engineering, 2017, 117: 773-781. |
28 | Ding C S , Soni G , Bozorgi P , et al . A flat heat pipe architecture based on nanostructured titania[J]. Journal of Microelectromechanical Systems, 2010, 19(4): 878-884. |
29 | Lewis R , Liew L A , Xu S S , et al . Microfabricated ultra-thin all-polymer thermal ground planes[J]. Science Bulletin, 2015, 60(7): 701-706. |
30 | Ivanova M , Lai A , Gillot C , et al . Design, fabrication and test of silicon heat pipes with radial microcapillary grooves[C]//Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems. San Diego, USA: IEEE, 2009: 545-551. |
31 | Oshman C , Li Q , Liew L A , et al . Flat flexible polymer heat pipes[J]. Journal of Micromechanics & Microengineering, 2012, 23(1): 15001-15006. |
32 | Kline S J , McClintock F A . Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75(1): 3-8. |
33 | Li Y , Li Z X , Zhou W J , et al . Experimental investigation of vapor chambers with different wick structures at various parameters[J]. Experimental Thermal & Fluid Science, 2016, 77: 132-143. |
34 | Ji X B , Li H C , Xu J L , et al . Integrated flat heat pipe with a porous network wick for high-heat-flux electronic devices[J]. Experimental Thermal & Fluid Science, 2017, 85: 119-131. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Limei SHEN, Boxing HU, Yufei XIE, Weihao ZENG, Xiaoyu ZHANG. Experimental study on heat transfer performance of ultra-thin flat heat pipe [J]. CIESC Journal, 2023, 74(S1): 198-205. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[11] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[12] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[13] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[14] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[15] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||