[1] |
ZHANG F, YANG X, XIE Y Q, et al. Pyrolytic carbon-coated Si nanoparticles on elastic graphene framework as anode materials for high-performance lithium-ion batteries[J]. Carbon, 2015, 82:161-167.
|
[2] |
LIU N, WU H, MATTHEW T M, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Lett., 2012, 12(6):3315-3321.
|
[3] |
NOVOSELOV K S, GEIM A K, MOROZOV S V. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065):197-200.
|
[4] |
LIU S, DONG Y, ZHAO C, et al. Nitrogen-rich carbon coupled multifunctional metal oxide/graphene nanohybrids for long-life lithium storage and efficient oxygen reduction[J]. Nano Energy, 2015, 12:578-587
|
[5] |
WU X, WANG Z, YU M, et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability[J]. Adv. Mater., 2017, 29(24):1607017
|
[6] |
CAO F F, DENG J W, XIN S, et al. Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries[J]. Adv. Mater., 2011, 23(38):4415-4420.
|
[7] |
SONG T, XIA J L, LEE J H, et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries[J]. Nano Lett., 2010, 10(5):1710-1716.
|
[8] |
HERTZBERG B, ALEXEEV A, YUSHIN G. Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space[J]. J. Am. Chem. Soc., 2010, 132(25):8548-8549.
|
[9] |
PARK M H, KIM M G, JOO J, et al. Silicon nanotube battery anodes[J]. Nano Lett., 2009, 9(11):3844-3847.
|
[10] |
JIA H, GAO P, YANG J, et al. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material[J]. Adv. Energy Mater., 2011, 1(6):1036-1039.
|
[11] |
YU Y, GU L, ZHU C B, et al. Reversible storage of lithium in silver-coated three-dimensional macro-porous silicon[J]. Adv. Mater., 2010, 22(20):2247-2250.
|
[12] |
MAGASINSKI A, DIXON P, HERTZBERG B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nat. Mater., 2010, 9(4):353-358.
|
[13] |
WANG W, KUMTA P N. Nanostructured hybrid silicon/carbon nanotube heterostructures:reversible high-capacity lithium-ion anodes[J]. ACS Nano, 2010, 4(4):2233-2241.
|
[14] |
CUI L F, HU L B, CHOI J W. et al. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries[J]. ACS Nano, 2010, 4(4):3671-3678.
|
[15] |
ZHANG D S, YAN T T, SHI L Y, et al. Enhanced capacitive deionization performance of graphene/carbon nanotube composites[J]. J. Mater. Chem., 2012, 22(29):14696-14704.
|
[16] |
XIANG H F, ZHANG K, JI G, et al. Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability[J]. Carbon, 2011, 49(5):1787-1796.
|
[17] |
YANG S W, FENG X L, IVANOVICI S, et al. Graphene-based nanosheets with a sandwich structure[J]. Angew. Chem. Int. Ed., 2010, 49(28):4795-4799.
|
[18] |
LIAN P C, ZHU X F, LIANG S Z, et al. High reversible capacity of SnO/graphene nanocomposite as an anode material for lithium-ion batteries[J]. Electrochim. Acta, 2011, 56(12):4532-4539.
|
[19] |
DENG J W, JI H X, YAN C L, et al. Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance[J]. Angew. Chem. Int. Ed., 2013, 52(8):2326-2330.
|
[20] |
JEONG G J, KIM J G, PARK M S, et al. Core-shell structured silicon nanoparticles@TiO2-x/Carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode[J]. ACS Nano, 2014, 8(3):2977-2985.
|
[21] |
DONG Y, YU M, WANG Z, et al. A top-down strategy toward 3D carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage[J]. Adv. Funct. Mater., 2016, 26(42):7590-7598.
|
[22] |
ZHAO X, HAYNER C M, KUNG M C, et al. In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries[J]. Adv. Energy Mater., 2011, 1(6):1079-1084.
|
[23] |
HE D F, BAI F J, LI L X, et al. Fabrication of sandwich-structured Si nanoparticles-graphene nanocomposites for high-performance lithium-ion batteries[J]. Electrochim. Acta, 2015, 169:409-415.
|
[24] |
HE D F, BAI F J, LI L X, et al. Three-dimensional nanocomposites of graphene/carbon nanotube matrix-embedded Si nanoparticles for superior lithium ion batteries[J]. Adv. Mate. Lett., 2017, 8(3):206-211.
|
[25] |
JEONG H, LEE S, SHIN W, et al. Silicon@porous nitrogen-doped carbon spheres through a bottom-up approach are highly robust lithium-ion battery anodes[J]. RSC Adv., 2012, 2(10):4311-4317.
|
[26] |
GU C D, MAI Y J, ZHOU J P, et al. Non-aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery[J]. J. Power Sources, 2012, 214(4):200-207.
|
[27] |
HUANG H, MAO Y, YING Y, et al. Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes[J]. Chem. Commun., 2013, 49(53):5963-5965.
|
[28] |
ZHOU X, YIN Y X, WAN L J, et al. Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries[J]. Adv. Energy Mater., 2012, 2(9):1086-1090.
|
[29] |
CHEN S, YEOH W, LIU Q, et al. Chemical-free synthesis of graphene-carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries[J]. Carbon, 2012, 50(12):4557-4565.
|
[30] |
WANG B, LI X, ZHANG X, et al. Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes[J]. ACS Nano, 2013, 7(2):1437-1445.
|