[1] |
KUMARI P, KUMAR M, GUPTA V, et al. Tropical marine macroalgae as potential sources of nutritionally important PUFAs[J]. Food Chemistry, 2010, 120(3):749-757.
|
[2] |
VERHOEVEN J T A, MEULEMAN A F M. Wetlands for wastewater treatment:opportunities and limitations[J]. Ecological Engineering, 1999, 12:5-12.
|
[3] |
常锋毅, 潘晓洁, 沈银武, 等. 藻类在农业生产中的资源化利用[J]. 华中农业大学学报, 2014, 33(2):139-144. CHANG F Y, PAN X J, SHEN Y W, et al. Application of algae as a resource in agricultural activities[J]. Journal of Huazhong Agricultural University, 2014, 33(2):139-144.
|
[4] |
ZOU S P, WU Y L, YANG M D, et al. Production and characterization of bio-crude oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake[J]. Energy, 2010, 35:5406-5411.
|
[5] |
CHEN Y X, REN X L, WEI Q F, et al. Hydrothermal liquefaction of Undaria pinnatifida residues to organic acids with recyclable trimethylamine[J]. Bioresource Technology, 2016, 221:477-484.
|
[6] |
GAI C, ZHANG Y, CHEN W, et al. Energy and nutrient recovery efficiencies in biocrude oil produced via hydrothermal liquefaction of Chlorella pyrenoidosa[J]. RSC Advances, 2014, 33:16958-16967.
|
[7] |
GUO Y, YEH T, SONG W H, et al. A review of bio-oil production from hydrothermal liquefaction of algae[J]. Renewable & Sustainable Energy Reviews, 2015, 48:776-790.
|
[8] |
ROSS A B, BILLER P, KUBACKI M L, et al. Hydrothermal processing of microalgae using alkali and organic acids[J]. Fuel, 2010, 89:2234-2243.
|
[9] |
ZHOU D, ZHANG L A, ZHANG S C, et al. Hydrothermal liquefaction of macroalgae enteromorpha prolifera to bio-oil[J]. Energy & Fuel, 2010, 24:4054-4061.
|
[10] |
ONDA A, OCHI T, KAJIYOSHI K, et al. A new chemical process for catalytic conversion of D-glucose into lactic acid and gluconic acid[J]. Applied Catalysis A-General, 2008, 343:49-54.
|
[11] |
TANG C, SHAN J, CHEN Y, et al. Organic amine catalytic organosolv pretreatment of corn stover for enzymatic saccharification and high-quality lignin[J]. Bioresource Technology, 2017, 232:222-228.
|
[12] |
XU D H, SAVAGE P E. Effect of reaction time and algae loading on water-soluble and insoluble biocrude fractions from hydrothermal liquefaction of algae[J]. Algal Research, 2015, 12:60-67.
|
[13] |
方丽娜, 陈宇, 刘娅, 等. 藻类水热液化产物生物油分离纯化及组分分析[J]. 化工学报, 2015, 66(9):3640-3648. FANG L N, CHEN Y, LIU Y, et al. Separation, purification and composition analysis of bio-oil from hydrothermal liquefaction of microalgae[J]. CIESC Journal, 2015, 66(9):3640-3648.
|
[14] |
XU D H, SAVAGE P E. Characterization of biocrudes recovered with and without solvent after hydrothermal liquefaction of algae[J]. Algal Research, 2014, 6:1-7.
|
[15] |
NAZARI L, YUAN Z, SOUZANCHI S, et al. Hydrothermal liquefaction of woody biomass in hot-compressed water:catalyst screening and comprehensive characterization of bio-crude oils[J]. Fuel, 2015, 162:74-83.
|
[16] |
朱晨杰, 杜风光, 应汉杰, 等. 木质纤维素基平台化合物催化转化制备液体燃料及燃料添加剂[J]. 化工学报, 2015, 66(8):2784-2794. ZHU C J, DU F G, YING H J, et al. Catalytic production of liquid hydrocarbon fuels and fuel additives from lignocellulosic platform molecules[J]. CIESC Journal, 2015, 66(8):2784-2794.
|
[17] |
YIN S, TAN Z. Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions[J]. Applied Energy, 2012, 92(2):234-239.
|
[18] |
胡见波, 杜泽学, 闵恩泽. 生物质水热液化机理研究进展[J]. 石油炼制与化工, 2012, 43(4):87-92. HU J B, DU Z X, MIN E Z. Progress in research of reaction mechainsm concerning hydrothermal liquefaction of biomass[J]. Petroleum Processing and Petrochemicals, 2012, 43(4):87-92.
|
[19] |
张冀翔, 王东, 蒋宝辉, 等. 厨余垃圾水热液化制取生物燃料[J]. 化工学报, 2016, 67(4):1475-1482. ZHANG J X, WANG D, JIANG B H, et al. Hydrothermal liquefaction of kitchen waste for bio-oil production[J]. CIESC Journal, 2016, 67(4):1475-1482.
|
[20] |
ZHANG L, LI C J, ZHOU D, et al. Hydrothermal liquefaction of water hyacinth:product distribution and identification[J]. Journal of Analytical and Applied Pyrolysis, 2013, 35:1349-1357.
|
[21] |
CHANGI S M, FAETH J L, MO N, et al. Hydrothermal reactions of biomolecules relevant for microalgae liquefaction[J]. Industrial & Engineering Chemistry Research, 201554:11733-11758.
|
[22] |
GÖKKAYA D S, SAGLAM M, YUKSEL M, et al. Hydrothermal gasification of xylose:effects of reaction temperature, pressure, and K2CO3 as a catalyst on product distribution[J]. Biomass & Bioenergy, 2016, 91:26-36.
|
[23] |
JAZRAWI C, BILLER P, HE Y, et al. Two-stage hydrothermal liquefaction of a high-protein microalga[J]. Algal Research, 2015, 8:15-22.
|
[24] |
MUPPANENI T, REDDY H K, SELVARATNAM T, et al. Hydrothermal liquefaction of Cyanidioschyzon merolae, and the influence of catalysts on products[J]. Bioresource Technology, 2017, 223:91-97.
|
[25] |
CHANGI S, BROWN T M, SAVAGE P E. Reaction kinetics and pathways for phytol in high-temperature water[J]. Chemical Engineering Journal, 2012, 189/190(5):336-345.
|
[26] |
SINGH R, BALAGURUMURTHY B, PRAKASH A, et al. Catalytic hydrothermal liquefaction of water hyacinth[J]. Bioresource Technology, 2015, 178:157-165.
|
[27] |
XIU S N, SHAHBAZI A, SHIRLEY V, et al. Hydrothermal pyrolysis of swine manure to bio-oil:effects of operating parameters on products yield and characterization of bio-oil[J]. Journal of Analytical & Applied Pyrolysis, 2010, 88(1):73-79.
|
[28] |
ANASTASAKIS K, ROSS A B, JONES J M. Pyrolysis behaviour of the main carbohydrates of brown macro-algae[J]. Fuel, 2011, 90:598-607.
|
[29] |
SAHA B, LEE J, VLACHOS D. Pt catalysts for efficient aerobic oxidation of glucose to glucaric acid in water[J]. Green Chemistry, 2016, 18(13):3815-3822.
|
[30] |
JUNG K W, JEONG T U, KANG H J, et al. Characteristics of biochar derived from marine macroalgae and fabrication of granular biochar by entrapment in calcium-alginate beads for phosphate removal from aqueous solution[J]. Bioresource Technology, 2016, 211:108-116.
|
[31] |
HU S, JIANG L, WANG Y, et al. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures[J]. Bioresource Technology, 2015, 192:23-30.
|