[1] |
FUHS G W, CHEN M. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater[J]. Microbial Ecology, 1975, 2(2):119-138.
|
[2] |
SEVIOUR R J, MINO T, ONUKI M. The microbiology of biological phosphorus removal in activated sludge systems[J]. Microbiology Reviews, 2003, 27(1):99-127.
|
[3] |
AHN J, SCHROEDER S, BEER M, et al. Ecology of the microbial community removing phosphate from wastewater under continuously aerobic conditions in a sequencing batch reactor[J]. Applied and Environmental Microbiology, 2007, 73(7):2257-2270.
|
[4] |
FILIPE C D M, DAIGGER G T, GRADY C P L. pH as a key factor in the competition between glycogen-accumulating organisms and phosphorus-accumulating organisms[J]. Water Environment Research, 2001, 73(2):223-232.
|
[5] |
LIU W T, NAKAMURA K, MATSUO T, et al. Internal energy-based competition between polyphosphate-and glycogen-accumulating bacteria in biological phosphorus removal reactors-effect of P/C feeding ratio[J]. Water Research, 1997, 31(6):1430-1438.
|
[6] |
SAUNDERS A M, OEHMEN A, BLACKALL L L, et al. The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants[J]. Water Science and Technology, 2003, 47(11):37-43.
|
[7] |
SATOH H. Deterioration of enhanced biological phosphate removal by the domination of microorganisms without poly-P accumulating[J]. Water Science and Technology, 1994, 30(6):203-211.
|
[8] |
MINO T, LIU W, KURISU F, et al. Modeling gloycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal process[J]. Water Science and Technology, 1995, 31(2):25-34.
|
[9] |
ZENG R J, YUAN Z G, KELLER J. Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system[J]. Biotechnology and Bioengineering, 2003, 81(4):397-404.
|
[10] |
MIAO L, WANG S Y, LI B K, et al. Advanced nitrogen removal via nitrite using stored polymers in a modified sequencing batch reactor treating landfill leachate[J]. Bioresource Technology, 2015, 192:354-360.
|
[11] |
JI J T, PENG Y Z, WANG B, et al. Achievement of high nitrite accumulation via endogenous partial denitrification (EPD)[J]. Bioresource Technology, 2017, 224:140-146.
|
[12] |
李安安, 李勇智, 祝贵兵, 等. 活性污泥体系中聚糖菌的富集与鉴定[J]. 环境工程学报, 2009, 3(5):927-931. LI A A, LI Y Z, ZHU G B, et al. Enrichment and identification of glycogen accumulating organism in activated sludge system[J]. Chinese Journal of Environmental Engineering, 2009, 3(5):927-931.
|
[13] |
魏复盛. 水和废水监测分析方法指南[M]. 北京:中国环境科学出版社, 1994. WEI F S. Guidelines for Monitoring and Analyzing Water and Wastewater[M]. Beijing:China Environmental Science Press, 1994.
|
[14] |
OEHMEN A, KELLER-LEHMANN B, ZENG R J, et al. Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070 (1/2):131-136.
|
[15] |
OEHMEN A, ZENG R J, YUAN Z G, et al. Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems[J]. Biotechnology and Bioengineering, 2005, 91(1):43-53.
|
[16] |
WANG X X, WANG S Y, XUE T L, et al. Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage[J]. Water Research, 2015, 77:191-200.
|
[17] |
CECH J S, HARTMAN P. Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems[J]. Water Research, 1993, 27(7):1219-1225.
|
[18] |
SATCH H, MINO T, MATSUO T. Deterioration of enhanced biological phosphorus removal by the domination of microorganisms without polyphosphate accumulation[J]. Water Science and Technology, 1994, 30(6):203-211.
|
[19] |
MINO T, SATOH H. Metabolisms of different bacterial populations in enhanced biological phosphate removal process[J]. Water Science & Technology, 1994, 29(7):67-70.
|
[20] |
BEGUM S A, BATISTA J R. Microbial selection on enhanced biological phosphorus removal systems fed exclusively with glucose[J]. World Journal of Microbiology and Biotechnology, 2012, 28(5):2181-2193.
|
[21] |
马勇, 彭永臻, 王淑莹. 不同外碳源对污泥反硝化特性的影响[J]. 北京工业大学学报, 2009, 35(6):820-824. MA Y, PENG Y Z, WANG S Y. Sludge denitrification characteristics with different external carbon source[J]. Journal of Beijing University of Technology, 2009, 35(6):820-824.
|
[22] |
HALLIN S, LINDBERG C F, PELL M. Microbial adaptation, process performance and a suggested control strategy in a pre-denitrifying system with ethanol dosage[J]. Water Science & Technology, 1996, 34(1/2):91-99.
|
[23] |
郑平. 新型生物脱氮理论与技术[M]. 北京:科学出版社, 2004. ZHENG P. New Biological Denitrification Theory and Technology[M]. Beijing:Science Press, 2004.
|
[24] |
MINO T, LIU W T, KURISU F, et al. Modeling gloycogen storaged denitrification capability of microorganisms in enhanced biological phosphate removal process[J]. Water Science and Technology, 1995, 31(2):25-34.
|
[25] |
葛士建, 李夕耀, 彭永臻, 等. 改良UCT分段进水深度脱氮除磷工艺反硝化动力学性能[J]. 北京工业大学学报, 2011, 37(3):433-439. GE S J, LI X Y, PENG Y Z, et al. The modified UCT subsection water depth dephosphorization process denitrification kinetics performance[J]. Journal of Beijing University of Technology, 2011, 37(3):433-439.
|
[26] |
HENZE M, HARREMOE S P. Chemical biological nutrient removal:the HYPRO concept[C]//Proceedings of the 4th Gothenburg Symposium Chemical Water and Wastewater Treatment. Madrid:Springer Verlag, 1990:145-149.
|
[27] |
HENZE M. Nitrate versus oxygen utilization rates in wastewater and activated sludge systems[J]. Water Science and Technology, 1986, 18(6):115-122.
|
[28] |
HENZE M. The influence of raw wastewater biomass on activated sludge oxygen respiration rates and denitrification rates[J]. Water Science and Technology, 1989, 21(6/7):603-607.
|
[29] |
HENZE M. Capabilities of biological nitrogen removal processes from wastewater[J]. Water Science and Technology, 1991, 23(4/5/6):669-679.
|