CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 4948-4956.DOI: 10.11949/0438-1157.20220939
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yiran WANG(), Chaoyang GUAN, Xiang GAO, Hongxia CHEN()
Received:
2022-07-05
Revised:
2022-09-06
Online:
2022-12-06
Published:
2022-11-05
Contact:
Hongxia CHEN
通讯作者:
陈宏霞
作者简介:
王逸然(1997—),男,硕士研究生,wangyreasy@163.com
基金资助:
CLC Number:
Yiran WANG, Chaoyang GUAN, Xiang GAO, Hongxia CHEN. Experimental study on boiling dynamics modulation by porous foam deaeration board[J]. CIESC Journal, 2022, 73(11): 4948-4956.
王逸然, 关朝阳, 高翔, 陈宏霞. 多孔泡沫吸气板调控沸腾气泡动力学实验研究[J]. 化工学报, 2022, 73(11): 4948-4956.
Add to citation manager EndNote|Ris|BibTeX
q/(kW/m2) | ||||||
---|---|---|---|---|---|---|
h=2.27 mm | h=1.74 mm | h=2.27 mm | h=1.74 mm | h=2.27 mm | h=1.74 mm | |
87.1 | 1.53 | 1.87 | 1.81 | 1.92 | 1.58 | 1.88 |
95.8 | 1.52 | 1.85 | 1.83 | 1.91 | 1.58 | 1.86 |
107.2 | 1.49 | 1.83 | 1.88 | 1.92 | 1.58 | 1.83 |
Table 1 Strengthening factors at different heat fluxes
q/(kW/m2) | ||||||
---|---|---|---|---|---|---|
h=2.27 mm | h=1.74 mm | h=2.27 mm | h=1.74 mm | h=2.27 mm | h=1.74 mm | |
87.1 | 1.53 | 1.87 | 1.81 | 1.92 | 1.58 | 1.88 |
95.8 | 1.52 | 1.85 | 1.83 | 1.91 | 1.58 | 1.86 |
107.2 | 1.49 | 1.83 | 1.88 | 1.92 | 1.58 | 1.83 |
1 | Chen H X, Guo Y X, Yuan D Z, et al. Experimental study on frozen startup and heat transfer characteristics of a cesium heat pipe under horizontal state[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122105. |
2 | Zhang Y, Han H X, Wang N, et al. Improved heat spreading performance of functionalized graphene in microelectronic device application[J]. Advanced Functional Materials, 2015, 25(28): 4430-4435. |
3 | Tariq H A, Shoukat A A, Hassan M, et al. Thermal management of microelectronic devices using micro-hole cellular structure and nanofluids[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(5): 2171-2182. |
4 | Santini L, Cioncolini A, Butel M T, et al. Flow boiling heat transfer in a helically coiled steam generator for nuclear power applications[J]. International Journal of Heat and Mass Transfer, 2016, 92: 91-99. |
5 | 孙雄康, 李强. 多级复合芯结构的强化沸腾传热研究[J]. 化工学报, 2022, 73(3): 1127-1135. |
Sun X K, Li Q. Research on enhanced boiling heat transfer of multilevel composite wick structure[J]. CIESC Journal, 2022, 73(3): 1127-1135. | |
6 | 杨振, 姚元鹏, 李昀, 等. 表面活性剂对水过冷池沸腾特性影响实验研究[J]. 化工学报, 2022, 73(3): 1093-1101. |
Yang Z, Yao Y P, Li Y, et al. Experimental study on effect of surfactants on subcooled pool boiling characteristics of pure water working medium[J]. CIESC Journal, 2022, 73(3): 1093-1101. | |
7 | Zhang L, Wang T, Kim S, et al. The effects of wall superheat and surface wettability on nucleation site interactions during boiling[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118820. |
8 | Li X B, Wang S B, Wen R F, et al. Liquid film boiling enabled ultra-high conductance and high flux heat spreaders[J]. Cell Reports Physical Science, 2022, 3(3): 100746. |
9 | Jakob M. Heat transfer in evaporation and condensation-Ⅰ[J]. Am. Soc. Mech. Eng., 1936, 58: 643-660. |
10 | 姜洪鹏, 白敏丽, 高栋栋, 等. 超疏水/亲水性结构表面流动沸腾传热实验研究[J]. 化工学报, 2021, 72(8): 4093-4103. |
Jiang H P, Bai M L, Gao D D, et al. Experimental study on flow boiling heat transfer on superhydrophobic/hydrophilic structure surface[J]. CIESC Journal, 2021, 72(8): 4093-4103. | |
11 | Feng Y, Chang F C, Hu Z T, et al. Investigation of pool boiling heat transfer on hydrophilic-hydrophobic mixed surface with micro-pillars using LBM[J]. International Journal of Thermal Sciences, 2021, 163: 106814. |
12 | Banik M, Sett S, Bakli C, et al. Substrate wettability guided oriented self assembly of Janus particles[J]. Scientific Reports, 2021, 11: 1182. |
13 | Allred T P, Weibel J A, Garimella S V. The role of dynamic wetting behavior during bubble growth and departure from a solid surface[J]. International Journal of Heat and Mass Transfer, 2021, 172: 121167. |
14 | Liu Y, Tang J Q, Li L X, et al. Design of Cassie-wetting nucleation sites in pool boiling[J]. International Journal of Heat and Mass Transfer, 2019, 132: 25-33. |
15 | Sadaghiani A K, Altay R, Noh H, et al. Effects of bubble coalescence on pool boiling heat transfer and critical heat flux—a parametric study based on artificial cavity geometry and surface wettability[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118952. |
16 | Hsu C C, Lee M R, Wu C H, et al. Effect of interlaced wettability on horizontal copper cylinders in nucleate pool boiling[J]. Applied Thermal Engineering, 2017, 112: 1187-1194. |
17 | Zhao Z C, Ma X L, Li S L, et al. Visualization-based nucleate pool boiling heat transfer enhancement on different sizes of square micropillar array surfaces[J]. Experimental Thermal and Fluid Science, 2020, 119: 110212. |
18 | Xue Y F, Zhao J F, Wei J J, et al. Experimental study of nucleate pool boiling of FC-72 on micro-pin-finned surface under microgravity[J]. International Journal of Heat and Mass Transfer, 2013, 63: 425-433. |
19 | Ma X H, Yu C J, Lan Z, et al. Experimental study of nucleate boiling heat transfer ssing enhanced space-confined structures[J]. Journal of Heat Transfer, 2012, 134(6): 061501. |
20 | Duan L, Liu B, Qi B J, et al. Pool boiling heat transfer on silicon chips with non-uniform micro-pillars[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119456. |
21 | Kiyomura I S, Nunes J M, Souza R R, et al. Effect of microfin surfaces on boiling heat transfer using HFE-7100 as working fluid[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(7): 1-13. |
22 | Liu B, Yu L M, Zhang Y H, et al. Enhanced nucleate pool boiling by coupling the pinning act and cluster bubble nucleation of micro-nano composited surfaces[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119979. |
23 | Azarkish H. Pool boiling enhancement on biphilic micropillar arrays: control on the thin film evaporation and rewetting flow[J]. Numerical Heat Transfer, Part A: Applications, 2020, 78(2): 60-72. |
24 | Zhao Z C, Zhang J J, Jia D D, et al. Thermal performance analysis of pool boiling on an enhanced surface modified by the combination of microstructures and wetting properties[J]. Applied Thermal Engineering, 2017, 117: 417-426. |
25 | Dong L N, Quan X J, Cheng P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures[J]. International Journal of Heat and Mass Transfer, 2014, 71: 189-196. |
26 | Wu Z, Cao Z, Sundén B. Saturated pool boiling heat transfer of acetone and HFE-7200 on modified surfaces by electrophoretic and electrochemical deposition[J]. Applied Energy, 2019, 249: 286-299. |
27 | Quan X J, Wang D M, Cheng P. An experimental investigation on wettability effects of nanoparticles in pool boiling of a nanofluid[J]. International Journal of Heat and Mass Transfer, 2017, 108: 32-40. |
28 | Cao Z, Liu B, Preger C, et al. Pool boiling heat transfer of FC-72 on pin-fin silicon surfaces with nanoparticle deposition[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1019-1033. |
29 | Karri S B R. Dynamics of bubble departure in micro-gravity[J]. Chemical Engineering Communications, 1988, 70(1): 127-135. |
30 | Chen H X, Sun Y, Li L H, et al. Bubble dynamics and heat transfer performance on micro-pillars structured surfaces with various pillars heights[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120502. |
31 | Chen H X, Li L H, Wang Y R, et al. Heat transfer enhancement in nucleate boiling on micropillar-arrayed surfaces with time-varying wettability[J]. Applied Thermal Engineering, 2022, 200: 117649. |
32 | 陈宏霞, 李林涵, 王逸然, 等. 时空调控微柱表面浸润性强化单气泡沸腾换热[J]. 化工学报, 2021, 72(6): 3278-3287. |
Chen H X, Li L H, Wang Y R, et al. Enhancement of single bubble boiling heat transfer on micropillar surface by wettability modulation with time and space[J]. CIESC Journal, 2021, 72(6): 3278-3287. | |
33 | 陈宏霞, 李林涵, 高翔, 等. 基于气泡动力学分段调控浸润性强化核态沸腾[J]. 化工学报, 2022, 73(4): 1557-1565. |
Chen H X, Li L H, Gao X, et al. Enhancement of nucleate boiling by temporary modulation of wettability during the bubble dynamic process[J]. CIESC Journal, 2022, 73(4): 1557-1565. |
[1] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[2] | Yifei WANG, Qingqiang WANG, Desheng JI, Shenfang LI, Nan JIN, Yuchao ZHAO. Effects of the wall wettability of microchannel on the gas-liquid two-phase flow hydrodynamics [J]. CIESC Journal, 2022, 73(4): 1501-1514. |
[3] | Hongxia CHEN, Linhan LI, Xiang GAO, Yiran WANG, Yuxiang GUO. Enhancement of nucleate boiling by temporary modulation of wettability during the bubble dynamic process [J]. CIESC Journal, 2022, 73(4): 1557-1565. |
[4] | Xiang GAO, Yiran WANG, Chaoyang GUAN, Zhihua GE, Hongxia CHEN. Velocity/pressure field analysis of a single-bubble boiling on a diversion-enhanced microstructure surface [J]. CIESC Journal, 2022, 73(12): 5376-5383. |
[5] | HOU Zhaoning, WANG Lin, YAN Xiaona, LI Xiuzhen, WANG Zhanwei, LIANG Kunfeng. Numerical simulation of bubble dynamics under multi-ultrasonic vibrators [J]. CIESC Journal, 2021, 72(S1): 362-370. |
[6] | Yeming ZHU, Jinping LIU, Xiongwen XU, Dandan ZHU. Research on liquid film flow characteristics of vertical porous plate [J]. CIESC Journal, 2021, 72(8): 4081-4092. |
[7] | CHEN Hongxia, LI Linhan, WANG Yiran, GUO Yuxiang, LIU Lin. Enhancement of single bubble boiling heat transfer on micropillar surface by wettability modulation with time and space [J]. CIESC Journal, 2021, 72(6): 3278-3287. |
[8] | UTAKA Yoshio, XU Jingying, WANG Guozhuo, CHEN Zhihao. Study on freezing characteristics of water in gas diffusion layer of proton exchange membrane fuel cells [J]. CIESC Journal, 2021, 72(4): 2276-2282. |
[9] | Ruitao HUANG, Jiang CHUN, Zheng ZHANG, Qifan LI, Rongfu WEN, Xuehu MA. Boiling refrigerant transition and heat transfer characteristics of HFE-7100/water on the hierarchical structured surfaces [J]. CIESC Journal, 2021, 72(11): 5510-5519. |
[10] | Wei ZHOU, Li CHEN, Jingcheng DU, Luxi TAN, Lichun DONG, Cailong ZHOU. Bio-inspired fog harvesting materials: from fundamental research to promotional strategy [J]. CIESC Journal, 2020, 71(10): 4532-4552. |
[11] | Lei LIU, Yue ZHANG, Xia LI, Jinglei LEI, Lingjie LI. Preparation and characterization of durable superhydrophobic protective coatings on aluminum alloy [J]. CIESC Journal, 2020, 71(10): 4750-4759. |
[12] | Shuai MOU, Changying ZHAO, Zhiguo XU. Pool boiling heat transfer performance and mechanism of square copper pillar arrays with partially-modified surface [J]. CIESC Journal, 2019, 70(4): 1291-1301. |
[13] | Hongxia CHEN, Yuan SUN, Yifei GONG, Linbin HUANG. Visual measurement and data analysis of pool boiling on silicon surfaces [J]. CIESC Journal, 2019, 70(4): 1309-1317. |
[14] | Zhijia HUANG, Liang LUO, Rui KE, Feifei ZHUO, Liang ZHONG. Dehumidification performance experiment of hydrophilic non-woven PVC composite structured packing [J]. CIESC Journal, 2019, 70(3): 913-921. |
[15] | WANG Xin, LI Xiaolei, LI Meihui, SANG Xunyuan, WANG Taiyang. Analyze acoustic emission signals from moving bubbles by clustering method [J]. CIESC Journal, 2018, 69(7): 2964-2971. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||