CIESC Journal ›› 2021, Vol. 72 ›› Issue (6): 3349-3358.DOI: 10.11949/0438-1157.20201544
• Energy and environmental engineering • Previous Articles Next Articles
MA Zhibin(),ZHANG Sen,SHAN Xueyuan,GUO Yanxia,CHENG Fangqin()
Received:
2020-11-01
Revised:
2021-02-07
Online:
2021-06-05
Published:
2021-06-05
Contact:
CHENG Fangqin
通讯作者:
程芳琴
作者简介:
马志斌(1987—),男,博士,副教授,基金资助:
CLC Number:
MA Zhibin, ZHANG Sen, SHAN Xueyuan, GUO Yanxia, CHENG Fangqin. Migration of lithium, gallium and rare earth elements in coal, coal slime, and coal gangue during combustion[J]. CIESC Journal, 2021, 72(6): 3349-3358.
马志斌, 张森, 单雪媛, 郭彦霞, 程芳琴. 煤、煤泥和煤矸石燃烧过程锂镓稀土元素的迁移规律[J]. 化工学报, 2021, 72(6): 3349-3358.
Add to citation manager EndNote|Ris|BibTeX
步骤 | 赋存状态 | 实验条件 |
---|---|---|
Ⅰ | 水溶态 | 8 g煤样+60 ml去离子水,25℃,24 h |
Ⅱ | 离子交换态 | Ⅰ残渣+60 ml NH4Ac,25℃,24 h |
Ⅲ | 有机结合态 | Ⅱ残渣+1.47 g/cm3 CHCl3,40℃干燥漂浮物,650℃灰化,+3 ml HNO3和3 ml HClO4,200℃,60 h |
Ⅳ | 碳酸盐态 | Ⅱ残渣,乙醇冲洗,40℃干燥,+20 ml 0.5%HCl |
Ⅴ | 硅酸盐态 | Ⅲ残渣+2.89 g/cm3 CHBr3,40℃干燥漂浮物,650℃灰化,+3 ml HNO3和3 ml HF,200℃,60 h |
Ⅵ | 硫化物态 | Ⅲ残渣,水冲洗,40℃干燥,+HNO3,5 h |
Table 1 Experimental conditions of stepwise chemical extraction method
步骤 | 赋存状态 | 实验条件 |
---|---|---|
Ⅰ | 水溶态 | 8 g煤样+60 ml去离子水,25℃,24 h |
Ⅱ | 离子交换态 | Ⅰ残渣+60 ml NH4Ac,25℃,24 h |
Ⅲ | 有机结合态 | Ⅱ残渣+1.47 g/cm3 CHCl3,40℃干燥漂浮物,650℃灰化,+3 ml HNO3和3 ml HClO4,200℃,60 h |
Ⅳ | 碳酸盐态 | Ⅱ残渣,乙醇冲洗,40℃干燥,+20 ml 0.5%HCl |
Ⅴ | 硅酸盐态 | Ⅲ残渣+2.89 g/cm3 CHBr3,40℃干燥漂浮物,650℃灰化,+3 ml HNO3和3 ml HF,200℃,60 h |
Ⅵ | 硫化物态 | Ⅲ残渣,水冲洗,40℃干燥,+HNO3,5 h |
煤样 | 工业分析/%(质量, ad) | 元素分析/%(质量, ad) | ||||||
---|---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FC | C | H | N | S | |
SZ | 1.7 | 23.6 | 31.4 | 43.2 | 79.7 | 5.1 | 1.3 | 1.5 |
ZGE | 3.8 | 26.9 | 25.7 | 43.6 | 54.9 | 3.2 | 1.1 | 0.4 |
TKT | 4.3 | 28.7 | 27.7 | 39.2 | 50.3 | 3.2 | 0.9 | 0.9 |
DT | 1.6 | 27.8 | 23.3 | 47.2 | 49.2 | 2.9 | 1.0 | 0.4 |
SS | 4.3 | 27.2 | 36.8 | 31.6 | 55.7 | 3.8 | 1.2 | 1.6 |
XY | 1.2 | 67.5 | 14.1 | 17.2 | 19.5 | 1.5 | 0.5 | 3.8 |
PS | 2.3 | 70.2 | 16.2 | 11.3 | 12.2 | 1.8 | 0.8 | 2.1 |
Table 2 Proximate and ultimate analyses of coal samples
煤样 | 工业分析/%(质量, ad) | 元素分析/%(质量, ad) | ||||||
---|---|---|---|---|---|---|---|---|
Mad | Aad | Vad | FC | C | H | N | S | |
SZ | 1.7 | 23.6 | 31.4 | 43.2 | 79.7 | 5.1 | 1.3 | 1.5 |
ZGE | 3.8 | 26.9 | 25.7 | 43.6 | 54.9 | 3.2 | 1.1 | 0.4 |
TKT | 4.3 | 28.7 | 27.7 | 39.2 | 50.3 | 3.2 | 0.9 | 0.9 |
DT | 1.6 | 27.8 | 23.3 | 47.2 | 49.2 | 2.9 | 1.0 | 0.4 |
SS | 4.3 | 27.2 | 36.8 | 31.6 | 55.7 | 3.8 | 1.2 | 1.6 |
XY | 1.2 | 67.5 | 14.1 | 17.2 | 19.5 | 1.5 | 0.5 | 3.8 |
PS | 2.3 | 70.2 | 16.2 | 11.3 | 12.2 | 1.8 | 0.8 | 2.1 |
815℃ 灰样 | 化学组成/%(质量) | |||||||
---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | K2O | CaO | SO3 | MgO | TiO2 | |
SZ | 47.7 | 42.3 | 1.8 | 0.6 | 3.6 | 2.2 | 0.2 | 1.6 |
ZGE | 44.2 | 52.3 | 0.7 | 0.2 | 0.8 | 0.7 | 0.1 | 1.0 |
TKT | 49.7 | 41.2 | 2.3 | 0.1 | 2.9 | 1.0 | 0.2 | 1.4 |
DT | 44.3 | 41.8 | 1.9 | 0.5 | 4.7 | 4.3 | 0.5 | 2.0 |
SS | 46.5 | 40.9 | 4.4 | 0.6 | 2.7 | 3.1 | 0.4 | 1.4 |
XY | 51.7 | 34.0 | 6.4 | 1.0 | 3.5 | 1.5 | 0.4 | 1.3 |
PS | 51.4 | 41.1 | 4.5 | 0.6 | 0.2 | 0.5 | 0.2 | 1.5 |
Table 3 Ash composition of coal samples
815℃ 灰样 | 化学组成/%(质量) | |||||||
---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | K2O | CaO | SO3 | MgO | TiO2 | |
SZ | 47.7 | 42.3 | 1.8 | 0.6 | 3.6 | 2.2 | 0.2 | 1.6 |
ZGE | 44.2 | 52.3 | 0.7 | 0.2 | 0.8 | 0.7 | 0.1 | 1.0 |
TKT | 49.7 | 41.2 | 2.3 | 0.1 | 2.9 | 1.0 | 0.2 | 1.4 |
DT | 44.3 | 41.8 | 1.9 | 0.5 | 4.7 | 4.3 | 0.5 | 2.0 |
SS | 46.5 | 40.9 | 4.4 | 0.6 | 2.7 | 3.1 | 0.4 | 1.4 |
XY | 51.7 | 34.0 | 6.4 | 1.0 | 3.5 | 1.5 | 0.4 | 1.3 |
PS | 51.4 | 41.1 | 4.5 | 0.6 | 0.2 | 0.5 | 0.2 | 1.5 |
样品 | 含量/(μg/g) | ||
---|---|---|---|
Li | Ga | REE | |
SZ | 197 | 34 | 128 |
ZGE | 160 | 44 | 98 |
TKT | 141 | 42 | 104 |
DT | 120 | 30 | 121 |
SS | 80 | 25 | 133 |
XY | 84 | 26 | 85 |
PS | 141 | 40 | 186 |
Table 4 Concentrations of Li, Ga, and REE in raw materials
样品 | 含量/(μg/g) | ||
---|---|---|---|
Li | Ga | REE | |
SZ | 197 | 34 | 128 |
ZGE | 160 | 44 | 98 |
TKT | 141 | 42 | 104 |
DT | 120 | 30 | 121 |
SS | 80 | 25 | 133 |
XY | 84 | 26 | 85 |
PS | 141 | 40 | 186 |
样品 | Li含量/%(质量) | |||||
---|---|---|---|---|---|---|
水溶态 | 离子 交换态 | 有机态 | 碳酸 盐态 | 硅酸 盐态 | 硫酸 盐态 | |
SZ | 4.2 | 1.9 | 5.8 | 2.5 | 85.7 | — |
ZGE | 1.5 | 0.8 | 0.7 | 0.2 | 96.8 | — |
TKT | 4.6 | 6.9 | 5.2 | 4.1 | 79.1 | — |
DT | 0.5 | 5.4 | 2.7 | 0.7 | 90.7 | — |
SS | 1.7 | 2.4 | 3.5 | 0.6 | 89.0 | 2.8 |
XY | 1.8 | 0.2 | 2.5 | 0.8 | 94.7 | — |
PS | 2.2 | 0.7 | 1.9 | 0.8 | 90.6 | 3.8 |
Table 5 Distribution of Li in different forms
样品 | Li含量/%(质量) | |||||
---|---|---|---|---|---|---|
水溶态 | 离子 交换态 | 有机态 | 碳酸 盐态 | 硅酸 盐态 | 硫酸 盐态 | |
SZ | 4.2 | 1.9 | 5.8 | 2.5 | 85.7 | — |
ZGE | 1.5 | 0.8 | 0.7 | 0.2 | 96.8 | — |
TKT | 4.6 | 6.9 | 5.2 | 4.1 | 79.1 | — |
DT | 0.5 | 5.4 | 2.7 | 0.7 | 90.7 | — |
SS | 1.7 | 2.4 | 3.5 | 0.6 | 89.0 | 2.8 |
XY | 1.8 | 0.2 | 2.5 | 0.8 | 94.7 | — |
PS | 2.2 | 0.7 | 1.9 | 0.8 | 90.6 | 3.8 |
样品 | Ga含量/%(质量) | |||||
---|---|---|---|---|---|---|
水溶态 | 离子 交换态 | 有机态 | 碳酸 盐态 | 硅酸 盐态 | 硫酸 盐态 | |
SZ | 4.8 | 0.2 | 7.0 | 0.1 | 87.9 | — |
ZGE | 0.4 | 0.2 | 0.5 | 0.1 | 98.8 | — |
TKT | 2.7 | 4.7 | 2.1 | 3.8 | 86.7 | — |
DT | 1.3 | 5.0 | 2.8 | 0.8 | 90.1 | — |
SS | 2.6 | 1.7 | 3.9 | — | 91.8 | — |
XY | 3.6 | 0.2 | 4.4 | 1.2 | 90.5 | — |
PS | 0.9 | 0.1 | 0.3 | 0.3 | 98.1 | 0.2 |
Table 6 Distribution of Ga in different forms
样品 | Ga含量/%(质量) | |||||
---|---|---|---|---|---|---|
水溶态 | 离子 交换态 | 有机态 | 碳酸 盐态 | 硅酸 盐态 | 硫酸 盐态 | |
SZ | 4.8 | 0.2 | 7.0 | 0.1 | 87.9 | — |
ZGE | 0.4 | 0.2 | 0.5 | 0.1 | 98.8 | — |
TKT | 2.7 | 4.7 | 2.1 | 3.8 | 86.7 | — |
DT | 1.3 | 5.0 | 2.8 | 0.8 | 90.1 | — |
SS | 2.6 | 1.7 | 3.9 | — | 91.8 | — |
XY | 3.6 | 0.2 | 4.4 | 1.2 | 90.5 | — |
PS | 0.9 | 0.1 | 0.3 | 0.3 | 98.1 | 0.2 |
样品 | REE含量/%(质量) | |||||
---|---|---|---|---|---|---|
水溶态 | 离子 交换态 | 有机态 | 碳酸 盐态 | 硅酸 盐态 | 硫酸 盐态 | |
SZ | 4.8 | 3.6 | 8.3 | 2.9 | 80.3 | — |
ZGE | 1.9 | 0.8 | 0.9 | 0.2 | 96.3 | — |
TKT | 5.5 | 8.9 | 5.5 | 4.5 | 75.6 | — |
DT | 1.0 | 9.0 | 4.6 | 1.1 | 84.4 | — |
SS | 3.3 | 2.6 | 6.3 | — | 87.8 | — |
XY | 2.0 | 0.3 | 2.9 | 1.4 | 93.5 | — |
PS | 2.0 | 0.7 | 0.9 | 0.6 | 93.6 | 2.2 |
Table 7 Distribution of REE in different forms
样品 | REE含量/%(质量) | |||||
---|---|---|---|---|---|---|
水溶态 | 离子 交换态 | 有机态 | 碳酸 盐态 | 硅酸 盐态 | 硫酸 盐态 | |
SZ | 4.8 | 3.6 | 8.3 | 2.9 | 80.3 | — |
ZGE | 1.9 | 0.8 | 0.9 | 0.2 | 96.3 | — |
TKT | 5.5 | 8.9 | 5.5 | 4.5 | 75.6 | — |
DT | 1.0 | 9.0 | 4.6 | 1.1 | 84.4 | — |
SS | 3.3 | 2.6 | 6.3 | — | 87.8 | — |
XY | 2.0 | 0.3 | 2.9 | 1.4 | 93.5 | — |
PS | 2.0 | 0.7 | 0.9 | 0.6 | 93.6 | 2.2 |
1 | 王涛, 张新军. 煤中伴生矿产赋存状态及提取方法综述[J]. 矿产综合利用, 2019, (4): 21-25. |
Wang T, Zhang X J. Summary of occurrence and extraction methods of associated minerals in coal [J]. Mult. Utiliz. Min. Res., 2019, (4): 21-25. | |
2 | Ma J L, Xiao L, Zhang K, et al. Geochemistry of carboniferous-permian coal from the Wujiawan Mine, Datong Coalfield, Northern China: modes of occurrence, origin of valuable trace elements, and potential industrial utilization [J]. Minerals, 2020, 10: 776-799. |
3 | Sun Y Z, Zhao C L, Qin S J, et al. Occurrence of some valuable elements in the unique ‘high-aluminium coals’ from the Jungar coalfield, China [J]. Ore Geol. Rev., 2016, 72: 659–668. |
4 | Liu B J, Wang J Y, He H T, et al. Geochemistry of carboniferous coals from the Laoyaogou mine, Ningwu coalfield, Shanxi Province, Northern China: emphasis on the enrichment of valuable elements [J]. Fuel, 2020, 279: 118414-118425. |
5 | Wang J X, Wang Q, Shi J, et al. Distribution and enrichment mode of Li in the No. 11 coal seam from Pingshuo mining district, Shanxi province [J]. Energ. Explor. Exploit., 2015, 33(2): 203-215. |
6 | Xiao L, Zhao B, Duan P P, et al. Geochemical characteristics of trace elements in the No. 6 coal seam from the Chuancaogedan Mine, Jungar Coalfield, Inner Mongolia, China [J]. Minerals, 2016, 6: 28. |
7 | 陈健, 陈萍, 刘文中, 等. 煤系共伴生资源利用现状及两淮煤田前景分析[J]. 洁净煤技术, 2015, 21(6): 105-108. |
Chen J, Chen P, Liu W Z, et al. Utilization of associated resources occurred in Chinese coal-bearing series and its prospects in Huainan and Huaibei coalfields [J]. Clean Coal Technol., 2015, 21(6): 105-108. | |
8 | Dai S F, Jiang Y F, Ward R C, et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield [J]. Int. J. Coal Geol., 2012, 98: 10-40. |
9 | 白洪杰. 准格尔电煤燃烧过程中微量元素迁移规律[D]. 邯郸: 河北工程大学, 2014. |
Bai H J. The trace elements migratory regularity during combustion process of coal of Junger power plant [D]. Handan: Hebei University of Engineering, 2014. | |
10 | Blissett R S, Smalley N, Rowson N A. An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content [J]. Fuel, 2014, 119: 236-239. |
11 | Ma Z B, Shan X Y, Cheng F Q. Distribution characteristics of valuable elements, Al, Li, and Ga, and rare earth elements in feed coal, fly ash, and bottom ash from a 300 MW circulating fluidized bed boiler [J]. ACS Omega, 2019, 4: 6854-6863. |
12 | Oboirien B O, Thulari V, North B C. Enrichment of trace elements in bottom ash from coal oxy-combustion: effect of coal types[J]. Appl. Energ., 2016, 177: 81-86. |
13 | Oboirien B O, Thulari V, North B C. Major and trace elements in coal bottom ash at different oxy coal combustion conditions [J]. Appl. Energ., 2014, 129: 207-216. |
14 | 陈怡伟. 热解过程煤中某些微量元素转化行为研究[D]. 合肥: 中国科学技术大学, 2008. |
Chen Y W. The transformation behavior of some trace elements in coal during pyrolysis [D]. Hefei: University of Science and Technology of China, 2008. | |
15 | Ratafia-Brown J A. Overview of trace element partitioning in flames and furnaces of utility coal-fired boilers [J]. Fuel Process. Technol., 1994, 39(1/2/3): 139-157. |
16 | 杨建业. 煤热解中微量元素迁移规律的再探索[J]. 煤炭学报, 2013, 38(12): 2227-2233. |
Yang J Y. Re-exploration on the law of trace elements migration during the pyrolysis of coal [J]. J. China Coal Soc., 2013, 38(12): 2227-2233 | |
17 | 杨建业, 张卫国, 邹建华. 煤中伴生稀有元素及其分布、迁移的几个规律 [J]. 稀有金属, 2020, 44(4): 440-448. |
Yang J Y, Zhang W G, Zou J H. Distribution and migration regulations of associated elements in coal [J]. Chinese J. Rare Metals, 2020, 44(4): 440-448. | |
18 | 张森, 马志斌, 郭彦霞, 等. 三种气氛热处理过程朔州煤中锂和镓及稀土元素的迁移规律[J]. 煤炭转化, 2019, 42(2): 8-12. |
Zhang S, Ma Z B, Guo Y X, et al. Migration of lithium, gallium and rare earth elements in Shuozhou coal during heat treatment process in three kinds of atmosphere [J]. Coal Conv., 2019, 42(2): 8-12. | |
19 | 王华. 陕北侏罗纪煤中微量元素赋存形态及迁移规律研究[D].西安: 西安科技大学, 2017. |
Wang H. Study on the mode of occurrence and migration of trace elements in Shanbei Jurassic coals [D]. Xi'an: Xi'an University of Science and Technology, 2017. | |
20 | 邹潺, 王春波, 郭辉, 等. 燃煤过程中砷的赋存形态及其挥发特性 [J]. 化工学报, 2018, 69(4): 1670-1677. |
Zou C, Wang C B, Guo H, et al. Volatilization characteristics and mode of occurrence of arsenic during coal combustion [J]. CIESC Journal, 2018, 69(4): 1670-1677. | |
21 | 刘慧敏, 王春波, 张月, 等. 温度和赋存形态对燃煤过程中砷迁移和释放的影响. 化工学报, 2015, 66(11): 4643-4651. |
Liu H M, Wang C B, Zhang Y, et al. Effect of temperature and occurrence form of arsenic on its migration and volatilization during coal combustion [J]. CIESC Journal, 2015, 66(11): 4643-4651. | |
22 | Qin S J, Lu Q F, Li Y H, et al. Relationships between trace elements and organic matter in coals [J]. J. Geochem. Explor., 2018, 188: 101-110. |
23 | Zou J H, Cheng L F, Guo Y C, et al. Mineralogical and geochemical characteristics of lithium and rare earth elements in high-sulfur coal from the Donggou Mine, Chongqing, Southwestern China [J]. Minerals, 2020, 10: 627-643. |
24 | 薄朋慧. 煤和煤灰中"三稀"元素的地球化学特征及其在燃烧中的迁移[D]. 邯郸: 河北工程大学, 2020. |
Bo P H. Geochemical characteristics of TREs in coal and coal ash and their migration during combustion [D]. Handan: Hebei University of Engineering, 2020. | |
25 | 覃轩.大同煤田煤中微量元素富集特征及共生关系成因研究[J]. 煤炭科学技术, 2019, 47( 11) : 189-195. |
Tan X. Study on enrichment characteristics of trace elements and genesis of symbiotic relationship of coal in Datong Coalfield [J]. Coal Sci. Technol., 2019, 47(11): 189-195. | |
26 | Li J, Zhuang X G, Yuan W, et al. Mineral composition and geochemical characteristics of the Li-Ga-rich coals in the Buertaohai-Tianjiashipan mining district, Jungar Coalfield, Inner Mongolia [J]. Int. J. Coal Geol., 2016, 167: 157–175. |
27 | Zhao C L, Liu B J, Xiao L, et al. Significant enrichment of Ga, Rb, Cs, REEs and Y in the Jurassic No. 6 coal in the Iqe Coalfield, northern Qaidam Basin, China—a hidden gem [J]. Ore Geol. Rev., 2017, 83: 1–13. |
28 | 党钾涛. 气流床煤粉气化煤中微量元素的迁移与配分[D]. 北京: 中国矿业大学(北京), 2017. |
Dang J T. Migration and partition of trace elements in coal during gasification in entrained-flow gasifier [D]. Beijing: China University of Mining & Technology (Beijing), 2017. | |
29 | Sorokin A P, Konyushok A A, Ageev O A, et al. Distribution of rare earth and selected trace elements in combustion products of Yerkovetskoe brown coal deposit (Amur Region, Russia) [J]. Energ. Explor. Exploit., 2019, 37(6): 1721-1736. |
30 | Hower J C, Fu B, Dai S F. Geochemical partitioning from pulverized coal to fly ash and bottom ash [J]. Fuel, 2020, 279: 118542-118554. |
31 | 张勇, 王西勃, 孙莹莹, 等. 煤灰化过程中有益元素镓的迁移和变化特征——以内蒙古准格尔富镓煤为例 [J]. 矿物岩石地球化学通报, 2008, 27(2): 133-136. |
Zhang Y, Wang X B, Sun Y Y, et al. Migration and variation of gallium in coal ashing: a case study of gallium-rich coal, Jungar, Inner Mongolia [J]. Bull. Miner. Petrol. Geochem., 2008, 27(2): 133-136. |
[1] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[2] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[3] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[4] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[5] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[6] | Xinyi LUO, Chao FENG, Jing LIU, Yu QIAO. Phosphorus recovery from products of sewage sludge via different thermal treatment processes [J]. CIESC Journal, 2022, 73(9): 4034-4044. |
[7] | Xinhua LIU, Zhennan HAN, Jian HAN, Bin LIANG, Nan ZHANG, Shanwei HU, Dingrong BAI, Guangwen XU. Principle and technology of low-NO x decoupling combustion based on restructuring reactions [J]. CIESC Journal, 2022, 73(8): 3355-3368. |
[8] | Zhiqiang GUO, Kezhou YAN, Jiyuan ZHANG, Dandan LIU, Yangyan GAO, Yanxia GUO. Influence mechanism of coal gangue / coal fly ash on the sodium reduction roasting reaction of red mud [J]. CIESC Journal, 2022, 73(5): 2194-2205. |
[9] | Cong HE, Wenqi ZHONG, Guanwen ZHOU, Xi CHEN. Study on decomposition characteristics of cement raw meal in suspension furnace at high altitude [J]. CIESC Journal, 2022, 73(5): 2120-2129. |
[10] | Xue LI, Ming DONG, Huang ZHANG, Jun XIE. Kinetic characteristics of micro-particle impact on a flat surface under humidity conditions [J]. CIESC Journal, 2022, 73(5): 1940-1946. |
[11] | Shipei XU, Chao WANG, Qingyuan LI, Bingkang ZHANG, Shiwei XU, Xueqin ZHANG, Shiying WANG, Mengxiao CONG. Study on influence of CaO during thermal desorption products of oil-based drilling cuttings [J]. CIESC Journal, 2022, 73(4): 1724-1731. |
[12] | Xuan LIU, Yinjiao SU, Yang TENG, Kai ZHANG, Pengcheng WANG, Lifeng LI, Zhen LI. Selenium transformation in ultra-low-emission coal-fired power units and its enrichment characteristics in fly ash [J]. CIESC Journal, 2022, 73(2): 923-932. |
[13] | Haolong BAI, Liangliang FU, Guangwen XU, Dingrong BAI. Characteristics of gaseous nitrogen release in coal fluidized bed combustion under different atmospheres [J]. CIESC Journal, 2022, 73(2): 876-886. |
[14] | Guanyu WANG, Lingjun ZHU, Jinsong ZHOU, Shurong WANG. Study on pyrolysis characteristics of paper mill solid waste based on synergistic effects of its components [J]. CIESC Journal, 2022, 73(1): 393-401. |
[15] | Qianhao WANG, Lu ZHAO, Fulin SUN, Kegong FANG. Production of syngas derived from H2S-CO2via synergy of ZSM-5 catalyst and non-thermal plasma [J]. CIESC Journal, 2022, 73(1): 255-265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||