[1] |
徐春明,杨朝合. 石油炼制工程[M]. 北京:中国石油工业出版社, 2009. XU C M, YANG C H. Petroleum Refinery Engineering[M]. Beijing:China Petroleum Press, 2009
|
[2] |
张结喜, 齐艳华, 邱建章. 催化裂化关联模型的研究[J]. 计算机与应用化学, 2007, 24(11):81-84. ZHANG J X, LIU Y H, QIU J Z. Study on FCC correlation models[J]. Computers and Applied Chemistry, 2007, 24(11):81-84
|
[3] |
BLANDING F H. Reaction rates in catalytic cracking of petroleum[J]. Industrial & Engineering Chemistry, 1953, 45(6):1186-1197.
|
[4] |
翁惠新, 欧阳福生, 马军. 重油催化裂化反应集总动力学模型(Ⅰ):模型的建立[J]. 化工学报, 1995, 46(6):662-668. WENG H X, OUYANG F S, MA J. Lumping kinetic model for heavy oil catalytic cracking(Ⅰ):Model establishment[J]. Journal of Chemical Industry and Engineering(China), 1995, 46(6):662-668
|
[5] |
翁惠新, 马军. 重油催化裂化反应集总动力学模型(Ⅱ):模型的工业验证[J]. 化工学报, 1995, 46(6):669-674. WENG H X, MA J. Lumping kinetic model for heavy oil catalytic cracking(Ⅱ):Industrial validation of the model[J]. Journal of Chemical Industry and Engineering(China), 1995, 46(6):669-674.
|
[6] |
熊凯, 卢春喜. 催化裂化(裂解)集总反应动力学模型研究进展[J]. 石油学报(石油加工), 2015, 31(2):293-306. XIONG K, LU C X. Research progresses of lump kinetic model of FCC and catalytic pyrolysis[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2015, 31(2):293-306.
|
[7] |
JACOB S M, BENJAMIN G, VOLTZ S E, et al. A lumping and reaction scheme for catalytic cracking[J]. AIChE Journal, 1976, 22(4):701-713.
|
[8] |
欧阳福生, 刘永吉. 集总动力学模型结合神经网络预测催化裂化产物收率[J]. 石油化工, 2017, (1):9-16. OUYANG F S, LIU Y J. Prediction of the product yield from catalytic cracking process by lumped kinetic model combined with neural network[J]. Petrochemical Technology, 2017, (1):9-16.
|
[9] |
MICHALOPOULOS J, PAPADOKONSTADAKIS S, ARAMPATZIS G, et al. Modelling of an industrial fluid catalytic cracking unit using neural networks[J]. Chemical Engineering Research & Design, 2001, 79(A2):137-142.
|
[10] |
LIGURAS D K, ALLEN D T. Structural models for catalytic cracking(1):Model compound reactions[J]. Industrial & Engineering Chemistry Research, 1989, 28(6):665-673.
|
[11] |
欧阳福生, 王磊, 王胜, 等. 催化裂解过程分子尺度反应动力学模型研究[J]. 高校化学工程学报, 2008, 22(6):927-934. OUYANG F S, WANG L, WANG S, et al. Molecular reaction kinetics model for deep catalytic cracking[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(6):927-934.
|
[12] |
郝鑫. 广义回归神经网络和遗传算法研究及其在化工过程建模中的应用[D]. 杭州:浙江大学, 2004. HAO X. The study of general regression neural network and genetic lgorithms and their application for chemical engineering[D]. Hangzhou:Zhejiang University, 2004
|
[13] |
GONZAGA J, MELEIRO L A C, KIANG C, et al. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process[J]. Computers & Chemical Engineering, 2009, 33(1):43-49.
|
[14] |
苏鑫, 吴迎亚, 裴华健, 等. 大数据技术在过程工业中的应用研究进展[J]. 化工进展, 2016, 35(6):1652-1659. SU X, WU Y Y, PEI H J, et al. Recent development of the application of big data technology in process industries[J]. Chemical Industry and Engineering Progress, 2016, 35(6):1652-1659.
|
[15] |
李鹏, 郑晓军, 明梁, 等. 大数据技术在催化裂化装置运行分析中的应用[J]. 化工进展, 2016, 35(3):665-670. LI P, ZHENG X J, MING L, et al. Application of big data technology in operation analysis of catalytic cracking[J]. Chemical Industry and Engineering Progress, 2016, 35(3):665-670.
|
[16] |
GUYON I, ELISSEEFF A. An Introduction to Variable and Feature Selection[M]. JMLR.org, 2003.
|
[17] |
BERMEJO P, GÁMEZ J A, PUERTA J M. A GRASP algorithm for fast hybrid (Filter-Wrapper) feature subset selection in high-dimensional datasets[J]. Pattern Recognition Letters, 2011, 32(5):701-711.
|
[18] |
CERVANTE L, XUE B, ZHANG M, et al. Binary particle swarm optimisation for feature selection:a Filter based approach[C]//Proceedings of the Evolutionary Computation, 2012.
|
[19] |
MALDONADO S, WEBER R. A Wrapper method for feature selection using support vector machines[J]. Information Sciences, 2008, 179(13):2208-2217.
|
[20] |
SEBBAN M, NOCK R. A hybrid Filter/Wrapper approach of feature selection using information theory[J]. Pattern Recognition, 2002, 35(4):835-846.
|
[21] |
HSU H H, HSIEH C W, LU M D. Hybrid feature selection by combining Filters and Wrappers[J]. Expert Systems with Applications, 2011, 38(7):8144-8150.
|
[22] |
ROBNIK ŠIKONJA M, KONONENKO I. An adaptation of Relief for attribute estimation in regression[C]//Proceedings of the Fourteenth International Conference on Machine Learning, 1997.
|
[23] |
ROBNIK ŠIKONJA M, KONONENKO I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53(1):23-69.
|
[24] |
张亚乐, 徐博文, 方崇智, 等. 一种改进的遗传算法在原油蒸馏过程优化中的应用[J]. 化工自动化及仪表, 1997, (3):12-17. ZHANG Y L, XU B W, FANG C Z, et al. Application of an improved genetic algorithm in optimization of crude distillation process[J]. Control and Instruments in Chemical Industry, 1997, (3):12-17.
|
[25] |
何险峰, 周家驹. 遗传算法及其在化学化工中的应用[J]. 化学进展, 1998, 10(3):312-318. HE X F, ZHOU J J. Genetic algorithms and their applications in chemistry and chemical engineering[J]. Progress in Chemistry, 1998, 10(3):312-318.
|
[26] |
王举, 陈中州, 袁希钢. 用于间歇化工过程最优设计的遗传算法[J]. 计算机与应用化学, 1999, (1):24-28. WANG J, CHEN Z Z, YUAN X G. A genetic algorithm for optimal design of batch processes[J]. Computers and Applied Chemistry, 1999, (1):24-28.
|
[27] |
王定成, 方廷健, 高理富, 等. 支持向量机回归在线建模及应用[J]. 控制与决策, 2003, 18(1):89-91. WANG D C, FANG Y J, GAO F L, et al. Support vector machines regression on-line modelling and its application[J]. Control and Decision, 2003, 18(1):89-91.
|
[28] |
朱树先, 张仁杰. 支持向量机核函数选择的研究[J]. 科学技术与工程, 2008, 8(16):4513-4517. ZHU S X, ZHANG R J. Study on selection of SVM kernel function[J]. Science Technology and Engineering, 2008, 8(16):4513-4517.
|
[29] |
胡局新, 张功杰. 基于K折交叉验证的选择性集成分类算法[J]. 科技通报, 2013, (12):115-117. HU J X, ZHANG G J. K-fold cross-validation based selected ensemble classification algorithm[J]. Bulletin of Science and Technology, 2013, (12):115-117.
|
[30] |
许友好, 龚剑洪, 张久顺, 等. 降低干气和焦炭产率的MIP工艺研究[J]. 石油炼制与化工, 2007, 38(10):7-11. XU Y H, GONG J H, ZHANG J S, et al. Study on the MIP process for reducing dry gas and coke yields[J]. Petroleum Processing and Petrochemicals, 2007, 38(10):7-11.
|
[31] |
张丽新. 高维数据的特征变量选择及基于特征变量选择的集成学习研究[D]. 北京:清华大学, 2004. ZHANG L X. Study on feature selection and ensemble learning based on feature selection for high-dimensional datasets[D]. Beijing:Tsinghua University, 2004.
|
[32] |
苏鑫, 裴华健, 吴迎亚, 等. 应用经遗传算法优化的BP神经网络预测催化裂化装置焦炭产率[J]. 化工进展, 2016, 35(2):389-396. SU X, PEI H J, WU Y Y, et al. Predicting coke yield of FCC unit using genetic algorithm optimized BP neural network[J]. Chemical Industry and Engineering Progress, 2016, 35(2):389-396.
|
[33] |
欧阳福生, 方伟刚, 唐嘉瑞, 等. 以BP神经网络为基础的MIP工艺过程产品分布优化[J]. 石油炼制与化工, 2016, 47(5):95-100. OUYANG F S, FANG W G, TANG J R, et al. Optimizing product distribution of MIP process using BP neural network[J]. Petroleum Processing and Petrochemicals, 2016, 47(5):95-100.
|