CIESC Journal ›› 2018, Vol. 69 ›› Issue (1): 464-471.DOI: 10.11949/j.issn.0438-1157.20170841
Previous Articles Next Articles
WANG Jie, CAO Daofan, LAN Xingying, GAO Jinsen
Received:
2017-06-29
Revised:
2017-08-12
Online:
2018-01-05
Published:
2018-01-05
Contact:
10.11949/j.issn.0438-1157.20170841
Supported by:
supported by Science Foundation of China University of Petroleum, Beijing (C201606).
王杰, 曹道帆, 蓝兴英, 高金森
通讯作者:
蓝兴英
基金资助:
中国石油大学(北京)青年创新团队C计划项目(C201606)。
CLC Number:
WANG Jie, CAO Daofan, LAN Xingying, GAO Jinsen. Select Filter-Wrapper characteristic variables for yield prediction of fluid catalytic cracking unit[J]. CIESC Journal, 2018, 69(1): 464-471.
王杰, 曹道帆, 蓝兴英, 高金森. 用于催化裂化装置产率预测的Filter-Wrapper特征变量选择方法[J]. 化工学报, 2018, 69(1): 464-471.
[1] | 徐春明,杨朝合. 石油炼制工程[M]. 北京:中国石油工业出版社, 2009. XU C M, YANG C H. Petroleum Refinery Engineering[M]. Beijing:China Petroleum Press, 2009 |
[2] | 张结喜, 齐艳华, 邱建章. 催化裂化关联模型的研究[J]. 计算机与应用化学, 2007, 24(11):81-84. ZHANG J X, LIU Y H, QIU J Z. Study on FCC correlation models[J]. Computers and Applied Chemistry, 2007, 24(11):81-84 |
[3] | BLANDING F H. Reaction rates in catalytic cracking of petroleum[J]. Industrial & Engineering Chemistry, 1953, 45(6):1186-1197. |
[4] | 翁惠新, 欧阳福生, 马军. 重油催化裂化反应集总动力学模型(Ⅰ):模型的建立[J]. 化工学报, 1995, 46(6):662-668. WENG H X, OUYANG F S, MA J. Lumping kinetic model for heavy oil catalytic cracking(Ⅰ):Model establishment[J]. Journal of Chemical Industry and Engineering(China), 1995, 46(6):662-668 |
[5] | 翁惠新, 马军. 重油催化裂化反应集总动力学模型(Ⅱ):模型的工业验证[J]. 化工学报, 1995, 46(6):669-674. WENG H X, MA J. Lumping kinetic model for heavy oil catalytic cracking(Ⅱ):Industrial validation of the model[J]. Journal of Chemical Industry and Engineering(China), 1995, 46(6):669-674. |
[6] | 熊凯, 卢春喜. 催化裂化(裂解)集总反应动力学模型研究进展[J]. 石油学报(石油加工), 2015, 31(2):293-306. XIONG K, LU C X. Research progresses of lump kinetic model of FCC and catalytic pyrolysis[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2015, 31(2):293-306. |
[7] | JACOB S M, BENJAMIN G, VOLTZ S E, et al. A lumping and reaction scheme for catalytic cracking[J]. AIChE Journal, 1976, 22(4):701-713. |
[8] | 欧阳福生, 刘永吉. 集总动力学模型结合神经网络预测催化裂化产物收率[J]. 石油化工, 2017, (1):9-16. OUYANG F S, LIU Y J. Prediction of the product yield from catalytic cracking process by lumped kinetic model combined with neural network[J]. Petrochemical Technology, 2017, (1):9-16. |
[9] | MICHALOPOULOS J, PAPADOKONSTADAKIS S, ARAMPATZIS G, et al. Modelling of an industrial fluid catalytic cracking unit using neural networks[J]. Chemical Engineering Research & Design, 2001, 79(A2):137-142. |
[10] | LIGURAS D K, ALLEN D T. Structural models for catalytic cracking(1):Model compound reactions[J]. Industrial & Engineering Chemistry Research, 1989, 28(6):665-673. |
[11] | 欧阳福生, 王磊, 王胜, 等. 催化裂解过程分子尺度反应动力学模型研究[J]. 高校化学工程学报, 2008, 22(6):927-934. OUYANG F S, WANG L, WANG S, et al. Molecular reaction kinetics model for deep catalytic cracking[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(6):927-934. |
[12] | 郝鑫. 广义回归神经网络和遗传算法研究及其在化工过程建模中的应用[D]. 杭州:浙江大学, 2004. HAO X. The study of general regression neural network and genetic lgorithms and their application for chemical engineering[D]. Hangzhou:Zhejiang University, 2004 |
[13] | GONZAGA J, MELEIRO L A C, KIANG C, et al. ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process[J]. Computers & Chemical Engineering, 2009, 33(1):43-49. |
[14] | 苏鑫, 吴迎亚, 裴华健, 等. 大数据技术在过程工业中的应用研究进展[J]. 化工进展, 2016, 35(6):1652-1659. SU X, WU Y Y, PEI H J, et al. Recent development of the application of big data technology in process industries[J]. Chemical Industry and Engineering Progress, 2016, 35(6):1652-1659. |
[15] | 李鹏, 郑晓军, 明梁, 等. 大数据技术在催化裂化装置运行分析中的应用[J]. 化工进展, 2016, 35(3):665-670. LI P, ZHENG X J, MING L, et al. Application of big data technology in operation analysis of catalytic cracking[J]. Chemical Industry and Engineering Progress, 2016, 35(3):665-670. |
[16] | GUYON I, ELISSEEFF A. An Introduction to Variable and Feature Selection[M]. JMLR.org, 2003. |
[17] | BERMEJO P, GÁMEZ J A, PUERTA J M. A GRASP algorithm for fast hybrid (Filter-Wrapper) feature subset selection in high-dimensional datasets[J]. Pattern Recognition Letters, 2011, 32(5):701-711. |
[18] | CERVANTE L, XUE B, ZHANG M, et al. Binary particle swarm optimisation for feature selection:a Filter based approach[C]//Proceedings of the Evolutionary Computation, 2012. |
[19] | MALDONADO S, WEBER R. A Wrapper method for feature selection using support vector machines[J]. Information Sciences, 2008, 179(13):2208-2217. |
[20] | SEBBAN M, NOCK R. A hybrid Filter/Wrapper approach of feature selection using information theory[J]. Pattern Recognition, 2002, 35(4):835-846. |
[21] | HSU H H, HSIEH C W, LU M D. Hybrid feature selection by combining Filters and Wrappers[J]. Expert Systems with Applications, 2011, 38(7):8144-8150. |
[22] | ROBNIK ŠIKONJA M, KONONENKO I. An adaptation of Relief for attribute estimation in regression[C]//Proceedings of the Fourteenth International Conference on Machine Learning, 1997. |
[23] | ROBNIK ŠIKONJA M, KONONENKO I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53(1):23-69. |
[24] | 张亚乐, 徐博文, 方崇智, 等. 一种改进的遗传算法在原油蒸馏过程优化中的应用[J]. 化工自动化及仪表, 1997, (3):12-17. ZHANG Y L, XU B W, FANG C Z, et al. Application of an improved genetic algorithm in optimization of crude distillation process[J]. Control and Instruments in Chemical Industry, 1997, (3):12-17. |
[25] | 何险峰, 周家驹. 遗传算法及其在化学化工中的应用[J]. 化学进展, 1998, 10(3):312-318. HE X F, ZHOU J J. Genetic algorithms and their applications in chemistry and chemical engineering[J]. Progress in Chemistry, 1998, 10(3):312-318. |
[26] | 王举, 陈中州, 袁希钢. 用于间歇化工过程最优设计的遗传算法[J]. 计算机与应用化学, 1999, (1):24-28. WANG J, CHEN Z Z, YUAN X G. A genetic algorithm for optimal design of batch processes[J]. Computers and Applied Chemistry, 1999, (1):24-28. |
[27] | 王定成, 方廷健, 高理富, 等. 支持向量机回归在线建模及应用[J]. 控制与决策, 2003, 18(1):89-91. WANG D C, FANG Y J, GAO F L, et al. Support vector machines regression on-line modelling and its application[J]. Control and Decision, 2003, 18(1):89-91. |
[28] | 朱树先, 张仁杰. 支持向量机核函数选择的研究[J]. 科学技术与工程, 2008, 8(16):4513-4517. ZHU S X, ZHANG R J. Study on selection of SVM kernel function[J]. Science Technology and Engineering, 2008, 8(16):4513-4517. |
[29] | 胡局新, 张功杰. 基于K折交叉验证的选择性集成分类算法[J]. 科技通报, 2013, (12):115-117. HU J X, ZHANG G J. K-fold cross-validation based selected ensemble classification algorithm[J]. Bulletin of Science and Technology, 2013, (12):115-117. |
[30] | 许友好, 龚剑洪, 张久顺, 等. 降低干气和焦炭产率的MIP工艺研究[J]. 石油炼制与化工, 2007, 38(10):7-11. XU Y H, GONG J H, ZHANG J S, et al. Study on the MIP process for reducing dry gas and coke yields[J]. Petroleum Processing and Petrochemicals, 2007, 38(10):7-11. |
[31] | 张丽新. 高维数据的特征变量选择及基于特征变量选择的集成学习研究[D]. 北京:清华大学, 2004. ZHANG L X. Study on feature selection and ensemble learning based on feature selection for high-dimensional datasets[D]. Beijing:Tsinghua University, 2004. |
[32] | 苏鑫, 裴华健, 吴迎亚, 等. 应用经遗传算法优化的BP神经网络预测催化裂化装置焦炭产率[J]. 化工进展, 2016, 35(2):389-396. SU X, PEI H J, WU Y Y, et al. Predicting coke yield of FCC unit using genetic algorithm optimized BP neural network[J]. Chemical Industry and Engineering Progress, 2016, 35(2):389-396. |
[33] | 欧阳福生, 方伟刚, 唐嘉瑞, 等. 以BP神经网络为基础的MIP工艺过程产品分布优化[J]. 石油炼制与化工, 2016, 47(5):95-100. OUYANG F S, FANG W G, TANG J R, et al. Optimizing product distribution of MIP process using BP neural network[J]. Petroleum Processing and Petrochemicals, 2016, 47(5):95-100. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[3] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[4] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[5] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[6] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[7] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
[8] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[9] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[10] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[11] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[12] | Zhe SUN, Huaqiang JIN, Kang LI, Jiangping GU, Yuejin HUANG, Xi SHEN. Fault diagnosis method of refrigeration and air-conditioning system based on digitized knowledge representation [J]. CIESC Journal, 2022, 73(7): 3131-3144. |
[13] | Ling YANG, Guomin CUI, Zhiqiang ZHOU, Yuan XIAO. Fine search strategy applied to mass exchange network synthesis [J]. CIESC Journal, 2022, 73(7): 3145-3155. |
[14] | Taoyan ZHAO, Jiangtao CAO, Ping LI, Lin FENG, Yu SHANG. Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane [J]. CIESC Journal, 2022, 73(7): 3166-3173. |
[15] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 479
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 393
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||