[1] |
AL-WAHAIBI T, AL-WAHAIBI Y, AL-AJMI A, et al. Experimental investigation on the performance of drag reducing polymers through two pipe diameters in horizontal oil-water flows[J]. Exp. Therm. Fluid Sci., 2013, 50:139-146.
|
[2] |
LI F C, KAWAGUCHI Y, HISHIDA K, et al. Investigation of turbulence structures in a drag-reduced turbulent channel flow with surfactant additive by stereoscopic particle image velocimetry[J]. Exp. Fluids, 2006, 40(2):218-230.
|
[3] |
QUINTAVALLA S J, ANGILELLA A J, SMITS A J. Drag reduction on grooved cylinders in the critical Reynolds number regime[J]. Exp. Therm. Fluid Sci., 2013, 48:15-18.
|
[4] |
YANG S Q, LI S, TIAN H P, et al. Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets[J]. Acta Mech. Sinica, 2016, 32(2):284-294.
|
[5] |
TOMS B A. Some observation on the flow of linear polymer solutions through straight tubes at large Reynolds numbers[C]//Proc. 1st Int. Cong. Rheol. Amsterdam, North Holland, 1948:135-141.
|
[6] |
MYSELS K J. Flow of thickened fluids:USA 2492173[P]. 1949-11-27.
|
[7] |
BURGER E D, MUNK W R, WAHL H A. Flow increase in the Trans Alaska pipeline through use of a ploymeric drag-reducing additive[J]. J. Pet. Tech., 1982, 34(2):377-386.
|
[8] |
OHLENDORF D, INTERTHAL W, HOFFMANN H. Surfactant systems for drag reduction:physico-chemical properties and rheological behaviour[J]. Rheol. Acta, 1986, 25(5):468-486.
|
[9] |
BEWERSDORFF H W, OHLENDORF D. The behaviour of drag-reducing cationic surfactant solutions[J]. Colloid Polym. Sci., 1988, 266(10):941-953.
|
[10] |
DEBYE P, ANACKER E W. Micelle shape from dissymmetry measurements[J]. J. Phys. Colloid Chem., 1951, 55(5):644-655.
|
[11] |
REHAGE H, WUNDERLICH I, HOFFMANN H. Shear induced phase transitions in dilute aqueous surfactant solutions[J]. Chem. Mater. Sci., 1986, 72:51-59.
|
[12] |
KAWAGUCHI Y, SEGAWA T, FENG Z, et al. Experimental study on drag-reducing channel flow with surfactant additives——spatial structure of turbulence investigated by PIV system[J]. Int. J. Heat Fluid Fl., 2002, 23(5):700-709.
|
[13] |
XU N, WEI J J, KAWAGUCHI Y. Rheology test on shear viscosity of surfactant solution:characteristic time, hysteresis phenomenon and fitting equation[J]. Ind. Eng. Chem. Res., 2016, 55(20):5817-5824.
|
[14] |
XU N, WEI J J, KAWAGUCHI Y. Dynamic and energy analysis on the viscosity transitions with increasing temperature under shear for dilute CTAC surfactant solutions[J]. Ind. Eng. Chem. Res., 2016, 55(8):2279-2286.
|
[15] |
XU N, WEI J J. Time-dependent shear-induced nonlinear viscosity effects in dilute CTAC/NaSal solutions:mechanism analyses[J]. Adv. Mech. Eng., 2014, 6:1-8.
|
[16] |
夏国栋, 王敏, 鹿院卫, 等. 表面活性剂添加对气液两相流摩阻压降特性的影响[J]. 化工学报, 2004, 55(5):727-731. XIA G D, WANG M, LU Y W, et al. Influences of surfactant on frictional pressure drop in gas-liquid flow[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(5):727-731.
|
[17] |
WALSH M J. Drag characteristics of V-groove and transverse curvature riblets[M]//HOUGH G R. Viscous Flow Drag Reduction. New York:AIAA J., 1979:168-184.
|
[18] |
WALSH M J. Turbulent boundary layer drag reduction using riblets[C]//20th Aerospace Sciences Meetings. Orlando:AIAA, 1982:769-787.
|
[19] |
WALSH M J, LINDEMANN A M. Optimization and application of riblets for turbulent drag reduction[C]//22nd Aerospace Sciences Meeting. Reno:AIAA, 1984:1-10.
|
[20] |
BECHERT D W, BARTENWERFER M, HOPPE G, et al. Drag reduction mechanisms derived from shark skin[C]//ICAS. Proc. 15th Cong. London, England:AIAA, 1986:1044-1068.
|
[21] |
CHOI K S. Drag reduction mechanisms and near-wall turbulence structure with riblets[M]//ALBERT G. Structure of Turbulence and Drag Reduction. Berlin Heidelberg:Springer, 1990:553-560.
|
[22] |
KOURY E, VIRK P S. Drag reduction by polymer solutions in a riblet-lined pipe[J]. Appl. Sci. Res., 1995, 54(4):323-347.
|
[23] |
CHAMORRO L P, ARNDT R E A, SOTIROPOULOS F. Drag reduction of large wind turbine blades through riblets:evaluation of riblet geometry and application strategies[J]. Renew. Energ., 2013, 50:1095-1105.
|
[24] |
HUANG C, LIU D, WEI J. Experimental study on drag reduction performance of surfactant flow in longitudinal grooved channels[J]. Chem. Eng. Sci., 2016, 152:267-279.
|
[25] |
HUANG C, WEI J. Experimental study on the collaborative drag reduction performance of a surfactant solution in grooved channels[J]. Braz. J. Chem. Eng., 2017, 34(1):159-170.
|
[26] |
NG J H, JAIMAN R K, LIM T T. Direct numerical simulation of geometric effects on turbulent flows over riblets[C]//7th AIAA Flow Control Conference. Atlanta:AIAA, 2014:1-25.
|
[27] |
VAN DER VORST H A. Bi-CGSTAB:a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems[J]. SIAM J. Sci. Stat. Comput., 1992, 13(2):631-644.
|
[28] |
YU B, KAWAGUCHI Y. Direct numerical simulation of viscoelastic drag-reducing flow:a faithful finite difference method[J]. J. Non-Newton Fluid, 2004, 116(2/3):431-466.
|
[29] |
GARCÍA-MAYORAL R, JIMÉNEZ J. Hydrodynamic stability and breakdown of the viscous regime over riblets[J]. J. Fluid Mech., 2011, 678(4):317-347.
|
[30] |
CHEN Q, ZHONG Q, WANG X, et al. An improved swirling-strength criterion for identifying spanwise vortices in wall turbulence[J]. J. Turbul., 2014, 15(2):71-87.
|