CIESC Journal ›› 2018, Vol. 69 ›› Issue (2): 725-732.DOI: 10.11949/j.issn.0438-1157.20170962
Previous Articles Next Articles
FU Jia, FENG Xiang, LIU Yibin, YANG Chaohe
Received:
2017-07-25
Revised:
2017-09-27
Online:
2018-02-05
Published:
2018-02-05
Supported by:
supported by the National Natural Science Foundation of China (U1462205, 21606254), the Natural Science Foundation of Shandong Province (ZR2016BB16), the Applied Fundamental Research of Qingdao (17-1-1-18-jch), the Key Research and Development Program of Shandong (2017GSF17126) and the Graduate Innovation Project(YCX2017037).
付佳, 冯翔, 刘熠斌, 杨朝合
通讯作者:
刘熠斌
基金资助:
国家自然科学基金项目(U1462205,21606254);山东省自然科学基金项目(ZR2016BB16);青岛市应用基础研究源头创新计划项目(17-1-1-18-jch);山东省重点研发计划项目(2017GSF17126);研究生创新工程基金项目(YCX2017037)。
CLC Number:
FU Jia, FENG Xiang, LIU Yibin, YANG Chaohe. Influence of Brønsted acid strength on conversion of carbenium ion by molecular simulation[J]. CIESC Journal, 2018, 69(2): 725-732.
付佳, 冯翔, 刘熠斌, 杨朝合. Brønsted酸强度对正碳离子转化方向影响的分子模拟[J]. 化工学报, 2018, 69(2): 725-732.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170962
[1] | MACHT J, JANIK M J, NEUROCK M, et al. Mechanistic consequences of composition in acid catalysis by polyoxometalate keggin clusters[J]. Journal of the American Chemical Society, 2008, 130(31):10369-10379. |
[2] | SONG W, NICHOLAS J B, HAW J F. A persistent carbenium ion on the methanol-to-olefin catalyst HSAPO-34:acetone shows the way[J]. Journal of Physical Chemistry B, 2001, 105(19):4317-4323. |
[3] | HAW J F, ZHANG J, SHIMIZU K, et al. NMR and theoretical study of acidity probes on sulfated zirconia catalysts[J]. Journal of the American Chemical Society, 2000, 122(50):12561-12570. |
[4] | YANG G, ZHOU L, HAN X. Lewis and Brönsted acidic sites in M4+-doped zeolites (M=Ti, Zr, Ge, Sn, Pb) as well as interactions with probe molecules:a DFT study[J]. Journal of Molecular Catalysis A Chemical, 2012, s 363/364:371-379. |
[5] | 胡思, 张卿, 尹琪, 等. 氢氧化钠-氟硅酸铵改性HZSM-5催化甲醇制丙烯[J]. 物理化学学报, 2015, 31(7):1374-1382. HU S, ZHANG Q, YIN Q, et al. Catalytic conversion of methanol to propylene over HZSM-5 modified by NaOH and (NH4)2SiF6[J]. Acta Physico-Chimica Sinica, 2015, 31(7):1374. |
[6] | 王彬, 王剑福, 张晓菲, 等. 二核铌钼硫簇NbMoSn-/0(n=3~7)掺杂体系的结构与成键性质的理论研究[J]. 化学学报, 2017, 75(3):307-320. WANG B, WANG J F, ZHANG X F, et al. Theoretical investigations on the structures and the chemical bonding of NbMoS n-/0(n=3-7) clusters[J]. Journal of Acta Chimica Sinica, 2017, 75(3):307-320. |
[7] | FU J, FENG X, LIUBIN Y, CHAOHE Y. Effect of pore confinement on the adsorption of mono-branched alkanes of naphtha in ZSM-5 and Y zeolites[J]. Applied Surface Science, 2017, 423:131-138. |
[8] | CHU Y, HAN B, FANG H, et al. Influence of acid strength on the reactivity of alkane activation on solid acid catalysts:a theoretical calculation study[J]. Microporous & Mesoporous Materials, 2012, 151(11):241-249. |
[9] | FANG H, ZHENG A, LI S, et al. New insights into the effects of acid strength on the solid acid-catalyzed reaction:theoretical calculation study of olefinic hydrocarbon protonation reaction[J]. Journal of Physical Chemistry C, 2010, 114(22):54-81. |
[10] | ZHENG X, BLOWERS P. An ab initio study of ethane conversion reactions on zeolites using the complete basis set composite energy method[J]. Journal of Molecular Catalysis A:Chemical, 2005, 229(1):77-85. |
[11] | DELLEY B. From molecules to solids with the DMol3 approach[J]. Journal of Chemical Physics, 2000, 113(18):7756-7764. |
[12] | ZHAO Y, TRUHLAR D G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions[J]. Journal of Chemical Physics, 2006, 125(19):194101. |
[13] | ZHAO Y, TRUHLAR D G. Improved description of nuclear magnetic resonance chemical shielding constants using the M06-L meta-generalized-gradient-approximation density functional[J]. Journal of Physical Chemistry A, 2008, 112(30):6794-9. |
[14] | ZHAO Y, HOU T, HANSON E. Benchmark data for noncovalent interactions in HCOOH… benzene complexes and their use for validation of density functionals[J]. Journal of Chemical Theory and Computation, 2009, 5(10):2726-2733. |
[15] | EYRING H. The activated complex in chemical reactions[J]. Journal of Chemical Physics, 1935, 3(2):107-115. |
[16] | JANIK M J, MACHT J, IGLESIA E, et al. Correlating acid properties and catalytic function:a first-principles analysis of alcohol dehydration pathways on polyoxometalates[J]. Journal of Physical Chemistry C, 2009, 113(5):1872-1885. |
[17] | CHU Y, HAN B, ZHENG A, et al. Influence of acid strength and confinement effect on the ethylene dimerization reaction over solid acid catalysts:a theoretical calculation study[J]. Journal of Physical Chemistry C, 2012, 116(23):12687-12695. |
[18] | BRAND H, CURTISS L, ITON L E. Ab initio molecular orbital cluster studies of the zeolite ZSM-5(I):Proton affinities[J]. Journal of Physical Chemistry, 1993, 97(49):12773-12782. |
[19] | HAW J F. Zeolite acid strength and reaction mechanisms in catalysis[J]. Cheminform, 2003, 34(3):5431-5441. |
[20] | STEPANOV A G, ZAMARAEV K I. 13C solid state NMR evidence for the existence of isobutyl carbenium ion in the reaction of isobutyl alcohol dehydration in H-ZSM-5 zeolite[J]. Catalysis Letters, 1993, 19(2):153-158. |
[21] | SAZAMA P, KAUCKY D, MORAVKOVA J. Superior activity of non-interacting close acidic protons in Al-rich Pt/H-* BEA zeolite in isomerization of n-hexane[J]. Applied Catalysis A:General, 2017, 533:28-37. |
[22] | ASENSI M, CORMA A, MARTINEZ A. Skeletal isomerization of 1-butene on MCM-22 zeolite catalyst[J]. Journal of Catalysis, 1996, 158(2):561-569. |
[23] | ?EJKA J, WICHTERLOVA B, SARV P. Extent of monomolecular and bimolecular mechanism in n -butene skeletal isomerization to isobutene over molecular sieves[J]. Applied Catalysis A:General, 1999, 179(1/2):217-222. |
[24] | BORONAT M, VIRUELA P, CORMA A. The skeletal isomerization of but-1-ene catalyzed by theta-1 zeolite[J]. Physical Chemistry Chemical Physics, 2001, 3(15):3235-3239. |
[25] | MULLER S, LIU Y, KIRCHBERGER F M. Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons[J]. Journal of the American Chemical Society, 2016, 138(49):15994-16003. |
[26] | BORONAT M, VIRUELA P, CORMA A. Theoretical study on the mechanism of the hydride transfer reaction between alkanes and alkylcarbenium ions[J]. Journal of Physical Chemistry B, 1997, 101(48):386. |
[27] | CARR R T, NEUROCK M, IGLESIA E, et al. Catalytic consequences of acid strength in the conversion of methanol to dimethyl ether[J]. Journal of Catalysis, 2011, 278(1):78-93 |
[28] | MACHT J, CARR R T, IGLESIA E. Consequences of acid strength for isomerization and elimination catalysis on solid acids[J]. Journal of the American Chemical Society, 2009, 131(18):6554-6565. |
[29] | 张剑秋. 降低汽油烯烃含量的催化裂化新材料探索[D]. 北京:石油化工科学研究院, 2001. ZHANG J Q. Novel catalytic materials for gasoline olefin reduction in the catalytic cracking process[D]. Beijing:Research Institute of Pertroleum Processing, 2001. |
[30] | MARTINEZ-ESPIN J S, DE WISPELAERE K, JANSSENS T V W. Hydrogen transfer versus methylation:on the genesis of aromatics formation in the methanol-to-hydrocarbons reaction over H-ZSM-5[J]. ACS Catalysis, 2017, 7(9):5773-5780. |
[31] | YU J G, ZHOU P, LI Q. New insight into the enhanced visible-light photocatalytic activities of B-, C-and B/C-doped anatase TiO2 by first-principles[J]. Physical Chemistry Chemical Physics, 2013, 15(29):12040-12047. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[3] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[4] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[5] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[9] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[10] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[11] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[12] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[13] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[14] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[15] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||