CIESC Journal ›› 2018, Vol. 69 ›› Issue (2): 733-740.DOI: 10.11949/j.issn.0438-1157.20171368
Previous Articles Next Articles
WANG Li1, WANG Xingjie1, LI Hao1, CHEN Yongwei1, LI Zhong1,2
Received:
2017-10-12
Revised:
2017-11-18
Online:
2018-02-05
Published:
2018-02-05
Supported by:
supported by the Guangdong Province Science and Technology Project(2016A020221006).
王丽1, 王兴杰1, 李浩1, 陈永伟1, 李忠1,2
通讯作者:
李忠
基金资助:
广东省省级科技计划项目(2016A020221006)。
CLC Number:
WANG Li, WANG Xingjie, LI Hao, CHEN Yongwei, LI Zhong. Separation performance of CO2/CH4 on porous carbons derived from glucose[J]. CIESC Journal, 2018, 69(2): 733-740.
王丽, 王兴杰, 李浩, 陈永伟, 李忠. 葡萄糖基多孔碳材料对CO2/CH4的分离性能[J]. 化工学报, 2018, 69(2): 733-740.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20171368
[1] | MONNET F. An Introduction to Anaerobic Digestion of Organic Wastes:Final Report[R]. Remade Scotland, 2003. |
[2] | BAE Y S, SNURR R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angewandte Chemie-International Edition, 2011, 50(49):11586-11596. |
[3] | 孔祥明, 杨颖, 沈文龙, 等. CO2/CH4/N2在沸石13X-APG上的吸附平衡[J]. 化工学报, 2013, 64(6):2117-2124. KONG X M, YANG Y, SHEN W L, et al. Adsorption equilibrium of CO2, CH4, and N2 on zeolite 13X-APG[J]. CIESC Journal, 2013, 64(6):2117-2124. |
[4] | MORISHIGE K. Adsorption and separation of CO2/CH4 on amorphous silica molecular sieve[J]. Journal of Physical Chemistry C, 2011, 115(19):9713-9718. |
[5] | 黄艳, 岳盈溢, 何靓, 等. 一种具有高CO吸附容量和高CO/N2及CO/CO2分离选择性的CuCl@β吸附剂[J]. 化工学报, 2015, 66(9):3556-3562. HUANG Y, YUE Y Y, HE L, et al. An efficient CuCl@β adsorbent with high CO adsorption uptake and CO/N2 and CO/CO2 selectivities[J]. CIESC Journal, 2015, 66(9):3556-3562. |
[6] | RIBEIRO R P, SAUER T P, LOPES F V, et al. Adsorption of CO2, CH4, and N2 in active carbon honeycomb monolith[J]. Journal of Chemical and Engineering Data, 2008, 53(10):2311-2317. |
[7] | SUMIDA K, ROGOW D L, MASON J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2):724-781. |
[8] | 刘有毅, 黄艳, 何嘉杰, 等. CO/N2/CO2在MOF-74(Ni)上吸附相平衡和选择性[J]. 化工学报, 2015, 66(11):4469-4475. LIU Y Y, HUANG Y, HE J J, et al. Adsorption isotherms and selectivity of CO/N2/CO2 on MOF-74(Ni)[J]. CIESC Journal, 2015, 66(11):4469-4475. |
[9] | 李玉洁, 苗晋朋, 孙雪娇, 等. 机械化学法合成金属有机骨架材料HKUST-1及其吸附苯性能[J].化工学报, 2015, 66(2):793-799. LI Y J, MIAO J P, SUN X J, et al. Mechano-chemical synthesis of HKUST-1 with high capacity of benzene adsorption[J].CIESC Journal, 2015, 66(2):793-799. |
[10] | HAMON L, JOLIMATRE E, PIRNGRUBER G D. CO2 and CH4 separation by adsorption using Cu-BTC metal-organic framework[J]. Industrial and Engineering Chemistry Research, 2010, 49(13):7497-7503. |
[11] | BRITT D, FURUKAWA H, WANG B, et al. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites[J]. Proceedings of National Academy of Sciences of the United States of America, 2009, 106(49):20637-20640. |
[12] | ZHANG Z J, HUANG S S, XIAN S K, et al. Adsorption equilibrium and kinetics of CO2 on chromium terephthalate MIL-101[J]. Energy Fuels, 2011, 25:835-842. |
[13] | 杨琰, 王莎, 张志娟, 等. 氨气改性的NH3@MIL-53(Cr)吸附CO2和CH4的性能[J]. 化工学报, 2014, 65(5):1759-1763. YANG Y, WANG S, ZHANG Z J, et al. CO2 and CH4 adsorption performance of modified MIL-53(Cr) via ammonia vapor[J]. CIESC Journal, 2014, 65(5):1759-1763. |
[14] | 刘江, 吴玉芳, 许峰, 等. 温度对MOF-74(Ni)吸附分离丙烯丙烷机理和选择性的影响[J]. 化工学报, 2016, 67(5):1942-1948. LIU J, WU Y F, XU F, et al. Effects of temperature on adsorption mechanism and adsorption selectivity of C3H6 and C3H8 on MOF-74(Ni)[J]. CIESC Journal, 2016, 67(5):1942-1948. |
[15] | XIAN S K, PENG J J, ZHANG Z J, et al. Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures[J]. Chemical Engineering Journal, 2015, 270:385-392. |
[16] | XIAN S K, XU F, ZHAO Z X, et al. A novel carbonized polydopamine(C-PDA) adsorbent with high CO2 adsorption capacity and water vapor resistance[J]. AIChE Journal, 2016, 62(10):3730-3738. |
[17] | XIAO Q, WEN J, GUO Y, et al. Synthesis, carbonization, and CO2 adsorption properties of phloroglucinol-melamine-formaldehyde polymeric nanofibers[J]. Industrial & Engineering Chemistry Research, 2016, 55(49):12667-12674. |
[18] | JALILOV A S, LI Y L, TIAN J, et al. Ultra-high surface area activated porous asphalt for CO2 capture through competitive adsorption at high pressures[J]. Advanced Energy Materials, 2017, 7(1):1600693. |
[19] | YUN K K, KIM G M, LEE J W. Highly porous N-doped carbons impregnated with sodium for efficient CO2 capture[J]. Journal of Materials Chemistry A, 2015, 3(20):10919-10927. |
[20] | WANG J, HEERWIG A, LOHE M R, et al. Fungi-based porous carbons for CO2 adsorption and separation[J]. Journal of Materials Chemistry, 2012, 22(28):13911-13913. |
[21] | WANG J, LIN Y, YUE Q, et al. N-rich porous carbon with high CO2 capture capacity derived from polyamine-incorporated metal-organic framework materials[J]. RSC Advances, 2016, 6(58):53017-53024. |
[22] | SUN X M, LI Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Chemie-Internation Edition, 2004, 43(5):597-601. |
[23] | CHANG B, GUAN D, TIAN Y, et al. Convenient synthesis of porous carbon nanospheres with tunable pore structure and excellent adsorption capacity[J]. Journal of Hazardous Material, 2013, 262(8):256-264. |
[24] | XU L, GUO L, HU G, et al. Nitrogen-doped porous carbon spheres derived from d-glucose as highly-efficient CO2 sorbents[J]. RSC Advances, 2015, 5(48):37964-37969. |
[25] | SEVILLE M, PARRA J B, FUERTAE A B. Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons[J]. ACS Applied Materials Interfaces, 2013, 5(13):6360-6368. |
[26] | WICKRAMANARTNE N P, JARONIEC M. Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres[J]. Journal of Materials Chemistry A, 2013, 1(1):112-116. |
[27] | WEI H R, DENG S B, HU B Y, et al. Granular bamboo-derived activated carbon for high CO2 adsorption:the dominant role of narrow micropores[J]. ChemSusChem, 2012, 5(12):2354-2360. |
[28] | BAO Z B, YU L, REN Q L, et al. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework[J]. Journal of Colloid and Interface Science, 2011, 353(2):549-556. |
[29] | LI J M, YANG J F, LI L B, et al. Separation of CO2/CH4 and CH4/N2 mixtures using MOF-5 and Cu3(BTC)2[J]. Journal of Energy Chemistry, 2014, 23(4):453-460. |
[30] | HU Z, FAUCHER S, ZHUO Y, et al. Combination of optimization and metalated-ligand exchange:an effective approach to functionalize UiO-66(Zr) MOFs for CO2 separation[J]. Chemistry, 2015, 21(48):17246-17255. |
[31] | ZHOU Z Y, MEI L, MA C, et al. A novel bimetallic MIL-101(Cr, Mg) with high CO2 adsorption capacity and CO2/N2 selectivity[J]. Chemical Engineering Science, 2016, 147:109-117. |
[32] | MEI L, JIANG T, ZHOU X, et al. A novel DOBDC-functionalized MIL-100(Fe) and its enhanced CO2 capacity and selectivity[J]. Chemical Engineering Journal, 2017, 321:600-607. |
[33] | HE Y, XIANG S, ZHANG Z, et al. A microporous metal-organic framework assembled from an aromatic tetracarboxylate for H2 purification[J]. Journal of Materials Chemistry A, 2013, 1(7):2543-2551. |
[34] | ZHU Y L, LONG H, ZHANG W. Imine-linked porous polymer frameworks with high small gas(H2, CO2, CH4, C2H2) uptake and CO2/N2 selectivity[J]. Chemistry of Materials, 2013, 25(9):1630-1635. |
[35] | WANG J, KRISHNA R, WU X F, et al. Polyfuran-derived microporous carbons for enhanced adsorption of CO2 and CH4[J]. Langmuir, 2015, 31(36):9845-9852. |
[36] | YANG J, YUE L M, HU X, et al. Efficient CO2 capture by porous carbons derived from coconut shell[J]. Energy Fuels, 2017, 31(4):4287-4293. |
[37] | GUO L P, YANG J, HU G S, et al. Role of hydrogen peroxide preoxidizing on CO2 adsorption of nitrogen-doped carbons produced from coconut shell[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5):2806-2813. |
[38] | CHANDRA V, YU S U, KIM S H, et al. Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets[J]. Chemical Communications, 2012, 48(5):735-737. |
[39] | ROQUEROL F, ROQUEROL J, SING K. Adsorption by Powders and Solids:Principles, Methodology, and Applications[M]. London:Academic Press, 1999:165-187. |
[40] | MYERS A L, PRAUSNITZ J M. Thermodynamics of mixed-gas adsorption[J]. AIChE Journal, 1965, 11:121-127. |
[41] | RUTHVEN D M. Principles of Adsorption and Adsorption Processes[M]. New York:Wiley, 1984:168-179. |
[42] | RUTHVEN D M. Pressure Swing Adsorption[M]//FAROOQ S, KNAEBEL K S. New York:Wiley-VCH, 1994:352. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[7] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[8] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[9] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[10] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[11] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[12] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[13] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[14] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[15] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||