CIESC Journal ›› 2018, Vol. 69 ›› Issue (2): 733-740.DOI: 10.11949/j.issn.0438-1157.20171368

Previous Articles     Next Articles

Separation performance of CO2/CH4 on porous carbons derived from glucose

WANG Li1, WANG Xingjie1, LI Hao1, CHEN Yongwei1, LI Zhong1,2   

  1. 1 School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China;
    2 State Key Laboratory of Subtropical Building Science, Guangzhou 510640, Guangdong, China
  • Received:2017-10-12 Revised:2017-11-18 Online:2018-02-05 Published:2018-02-05
  • Supported by:

    supported by the Guangdong Province Science and Technology Project(2016A020221006).

葡萄糖基多孔碳材料对CO2/CH4的分离性能

王丽1, 王兴杰1, 李浩1, 陈永伟1, 李忠1,2   

  1. 1 华南理工大学化学与化工学院, 广东 广州 510640;
    2 亚热带建筑科学国家重点实验室, 广东 广州 510640
  • 通讯作者: 李忠
  • 基金资助:

    广东省省级科技计划项目(2016A020221006)。

Abstract:

A series of glucose-based porous carbons (C-GLCs-800) were developed by simple carbonization and KOH activation, and characterized by scanning emission microscopy (SEM), nitrogen sorption, Fourier transformed infrared (FI-TR) and thermogravimetric analysis (TGA). Pure component adsorption isotherms of CO2 and CH4 were measured separately at 288, 298, and 308 K. The ideal adsorbed solution theory (IAST) model was used to estimate adsorption selectivity of the samples for CO2/CH4 binary mixtures. Results showed that the specific surface area and total pore volume of C-GLCs-800 increased at first and then decreased with the ratio of KOH/C at which the samples were activated. The BET surface area and total pore volume of C-GLC-800-4 reached as high as 3153 m2·g-1 of 2.056 cm3·g-1, respectively. The narrow micropores voulme of C-GLC-800-2 reached as high as 0.3538 cm3·g-1. The C-GLC-800-2 exhibited an extraordinary CO2 adsorption capacity of 3.96 mmol·g-1 at 298 K under 105 Pa, which was comparable to many traditional adsorbents and MOFs. The isosteric heats of CO2 adsorption on C-GLC-800-2 was higher than that of CH4. The IAST-predicted CO2/CH4 selectivity was about 8.35.

Key words: glucose, hydrothermal carbonization, porous carbons, carbon dioxide, methane, adsorption, selectivity

摘要:

以淀粉糖(主要成分为葡萄糖)为碳前体,制备了一系列多孔碳材料(C-GLCs-800),对其进行孔隙结构分析,并应用FT-IR、SEM、TGA对其进行了表征,测定了材料在288、298和308 K下的CO2和CH4吸附等温线,根据IAST理论预测了材料对CO2/CH4二元体系的吸附选择性。实验结果显示,活化条件对材料的孔隙结构有明显影响,随着KOH/C质量比的增加,所制备的C-GLCs-800比表面积和总孔容先增加后降低。其中C-GLC-800-4的BET比表面积高达3153 m2·g-1,总孔容为2.056 cm3·g-1。C-GLC-800-2的窄微孔(Vd<1 nm,孔容0.3538 cm3·g-1)含量最高,为30.63%。C-GLC-800-2在298 K和105 Pa下对CO2吸附量高达3.96 mmol·g-1,明显高于许多传统吸附材料和MOFs材料在相同条件下对CO2的吸附容量。应用Clausiuse-Clapeyron方程计算了CO2和CH4在材料上的吸附热,应用IAST理论计算了CO2/CH4的吸附选择性,结果显示C-GLC-800-2对CO2/CH4的吸附选择性为8.35。

关键词: 葡萄糖, 水热碳化, 多孔碳, 二氧化碳, 甲烷, 吸附, 选择性

CLC Number: