[1] |
LIU X, WANG M, ZHANG S, et al. Application potential of carbon nanotubes in water treatment:a review[J]. Journal of Environmental Sciences, 2013, 25(7):1263-1280.
|
[2] |
DAS R, ALI M E, HAMID S B A, et al. Carbon nanotube membranes for water purification:a bright future in water desalination[J]. Desalination, 2014, 336(1):97-109.
|
[3] |
王震宇, 赵建, 李娜, 等. 人工纳米颗粒对水生生物的毒性效应及其机制研究进展[J]. 环境科学, 2010, 31(6):1409-1418. WANG Z Y, ZHAO J, LI N, et al. Review of ecotoxicity and mechanism of engineered nanoparticles to aquatic organisms[J]. Environmental Science, 2010, 31(6):1409-1418.
|
[4] |
王玉琳, 闻韵, 王晓慧, 等. 多壁碳纳米管长期作用对活性污泥系统的影响[J]. 环境科学研究, 2014, 27(12):1486-1492. WANG Y L, WEN Y, WANG X H, et al. Long-term effects of multi-walled carbon nanotubes on activated sludge system[J]. Research of Environmental Sciences, 2014, 27(12):1486-1492.
|
[5] |
MADAENI S S, ZINADINI S, Vatanpour V. Convective flow adsorption of nickel ions in PVDF membrane embedded with multi-walled carbon nanotubes and PAA coating[J]. Separation & Purification Technology, 2011, 80(1):155-162.
|
[6] |
Ajmani G S, Goodwin D, Marsh K, et al. Modification of low pressure membranes with carbon nanotube layers for fouling control[J]. Water Research, 2012, 46(17):5645-5654.
|
[7] |
Yang X, Lee J, Yuan L, et al. Removal of natural organic matter in water using functionalised carbon nanotube buckypaper[J]. Carbon, 2013, 59(4):160-166.
|
[8] |
王利颖, 石洁, 王凯伦, 等. 碳纳米管改性PVDF中空纤维超滤膜处理二级出水抗污染性能研究[J]. 环境科学, 2017, 38(1):220-228. Wang L Y, Shi J, Wang K L, et al. Effect of PVDF hollow fiber ultrafiltration membranes modification with carbonnanotube on membrane fouling control during ultrafiltration of sewage effluent[J]. Environmental Science, 2017, 38(1):220-228.
|
[9] |
Wang Y, MA J, ZHU J, et al. Multi-walled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products[J]. Water Research, 2016, 92:104-112.
|
[10] |
WANG Y, ZHU J, HUANG H, et al. Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products:capabilities and potential mechanisms[J]. Journal of Membrane Science, 2015, 479:165-174.
|
[11] |
Kukovecz Á, Smajda R, Kónya Z, et al. Controlling the pore diameter distribution of multi-wall carbon nanotube buckypapers[J]. Carbon, 2007, 45(8):1696-1698.
|
[12] |
Ajmani G S, Cho H H, Chalew T E A, et al. Static and dynamic removal of aquatic natural organic matter by carbon nanotubes[J]. Water Research, 2014, 59(4):262-270.
|
[13] |
PAN B, XING B. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. Environmental Science & Technology, 2008, 42(24):9005-9013.
|
[14] |
史运华, 任玲玲, 李殿卿. 碳纳米管分散研究进展[J]. 化学通报, 2012, 75(6):502-507. SHI Y H, REN L L, LI D Q. The progress on carbon nanotube dispersions[J]. Chemistry, 2012, 75(6):502-507.
|
[15] |
JIANG L, GAO L, SUN J. Production of aqueous colloidal dispersions of carbon nanotubes[J]. Journal of Colloid & Interface Science, 2003, 260(1):89-94.
|
[16] |
Ryabenko A G, Dorofeeva T V, Zvereva G I. UV-VIS-NIR spectroscopy study of sensitivity of single-wall carbon nanotubes to chemical processing and van-der-Waals SWNT/SWNT interaction. Verification of the SWNT content measurements by absorption spectroscopy[J]. Carbon, 2004, 42(8/9):1523-1535.
|
[17] |
Smajda R, Kukovecz Á, Kónya Z, et al. Structure and gas permeability of multi-wall carbon nanotube buckypapers[J]. Carbon, 2007, 45(6):1176-1184.
|
[18] |
Chen X, QIU M, DING H, et al. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification[J]. Nanoscale, 2016, 8(10):5696-5705.
|
[19] |
Whitby R L D, Fukuda T, Maekawa T, et al. Geometric control and tuneable pore size distribution of buckypaper and buckydiscs[J]. Carbon, 2008, 46(6):949-956.
|
[20] |
špitalský Z, Aggelopoulos C, Tsoukleri G, et al. The effect of oxidation treatment on the properties of multi-walled carbon nanotube thin films[J]. Materials Science & Engineering B, 2009, 165(3):135-138.
|
[21] |
Wang H. Dispersing carbon nanotubes using surfactants[J]. Current Opinion in Colloid & Interface Science, 2009, 14(5):364-371.
|
[22] |
Georgakilas V, Demeslis A, Ntararas E, et al. Hydrophilic nanotube supported graphene-water dispersible carbon superstructure with excellent conductivity[J]. Advanced Functional Materials, 2015, 25(10):1481-1487.
|
[23] |
XIN X, XU G, ZHAO T, et al. Dispersing carbon nanotubes in aqueous solutions by a starlike block copolymer[J]. Journal of Physical Chemistry C, 2008, 112(42):16377-16384.
|
[24] |
Ansón-Casaos A, González-Domínguez J M, Terrado E, et al. Surfactant-free assembling of functionalized single-walled carbon nanotube buckypapers[J]. Carbon, 2010, 48(5):1480-1488.
|
[25] |
Barbari T. Basic principles of membrane technology[J]. Journal of Membrane Science, 1992, 72(3):304-305.
|
[26] |
Zhang J, Jiang D. Influence of geometries of multi-walled carbon nanotubes on the pore structures of buckypaper[J]. Composites Part A, 2012, 43(3):469-474.
|
[27] |
KARANFIL T, Kitis M, KILDUFF J E, et al. Role of granular activated carbon surface chemistry on the adsorption of organic compounds(2):Natural organic matter[J]. Environmental Science & Technology, 1999, 33(11):3217-3224.
|
[28] |
Hyung H, Kim J H. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes:effect of NOM characteristics and water quality parameters[J]. Environmental Science & Technology, 2008, 42(12):4416-4421.
|
[29] |
Yang K, Xing B. Adsorption of fulvic acid by carbon nanotubes from water[J]. Environmental Pollution, 2009, 157(4):1095-1100.
|
[30] |
Engel M, Chefetz B. Adsorption and desorption of dissolved organic matter by carbon nanotubes:effects of solution chemistry[J]. Environmental Pollution, 2016, 213:90-98.
|
[31] |
Oleszczuk P, Pan B, Xing B. Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes[J]. Environmental Science & Technology, 2010, 44(12):9167-9173.
|