[1] |
李宏光, 臧灏. 管式加热炉多模型神经网络预测控制[J]. 控制工程, 2012, 19(4):650-653. LI H G, ZANG H. Multi-model adaptive neural network based predictive control of furnace[J]. Control Engineering, 2012, 19(4):650-653.
|
[2] |
满红, 邵诚. 基于Hammerstein-Wiener模型的连续搅拌反应釜神经网络预测控制[J]. 化工学报, 2011, 62(8):2275-2280. MAN H, SHAO C. Neural network predictive control of continuous stirred-tank reactor based on Hammerstei-Wiener model[J]. CIESC Journal, 2011, 62(8):2275-2280.
|
[3] |
彭荻, 贺彦林, 徐圆,等. 基于数据特征提取的AANN-ELM研究及化工应用[J]. 化工学报, 2012, 63(9):2920-2925. PENG D, HE Y L, XU Y, et al. Research and chemical application of data feature extraction based AANN-ELM neural network[J]. CIESC Journal, 2012, 63(8):2920-2925.
|
[4] |
PICARD R W. Affective computing:challenges[J]. International Journal of Human-Computer Studies, 2003, 59(1/2):55-64.
|
[5] |
SHAROT T, VERFAELLIE M, YONELINAS A P. How emotion strengthens the recollective experience:a time-dependent hippocampal process[J]. Plos One, 2007, 2(10):e1068.
|
[6] |
KORT B, REILLY R, PICARD R W. An affective model of interplay between emotions and learning:reengineering educational pedagogy-building a learning companion[C]//Advanced Learning Technologies, 2001. Proceedings. IEEE International Conference on. IEEE, 2001:43-46.
|
[7] |
FELLOUS J M. Models of emotion[J]. Scholarpedia,2007, 2(11):1453.
|
[8] |
MARTINEZ-MIRANDA J, ALDEA A. Emotions in human and artificial intelligence[J]. Computers in Human Behavior, 2005, 21(2):323-341.
|
[9] |
GRATCH J, MARSELLA S. Evaluating a computational model of emotion[J]. Autonomous Agents and Multi-Agent Systems, 2005, 11(1):23-43.
|
[10] |
LITT A, ELIASMITH C, THAGARD P. Neural affective decision theory:choices, brains, and emotions[J]. Cognitive Systems Research, 2008, 9(4):252-273.
|
[11] |
MÉRIAU K, WARTENBURGER I, KAZZER P, et al. A neural network reflecting individual differences in cognitive processing of emotions during perceptual decision making[J]. Neuroimage, 2006, 33(3):1016-1027.
|
[12] |
XU P, WANG T. Emotion in decision making under uncertainty and cognitive control:a computational framework[C]//International Conference on Natural Computation. IEEE Computer Society, 2007:149-154.
|
[13] |
TAYLOR J G, FRAGOPANAGOS N. Modelling the interaction of attention and emotion[C]//IEEE International Joint Conference on Neural Networks. IEEE, 2006:1663-1668.
|
[14] |
LEVINE D S. Neural network modeling of emotion[J]. Physics of Life Reviews, 2007, 4(1):37-63.
|
[15] |
ARMONY J L, SERVAN D. An anatomically constrained neural network model of fear conditioning[J]. Behavioral Neuroscience, 1995, 109(2):246-257.
|
[16] |
RAYMOND A P, ROBERT S T, KRISTIN F L, et al. A Common Operating Picture for Air Force Materiel Sustainment[M]. Santa Monica:Rand Corporation, 2008.
|
[17] |
王爽心, 李朝霞, 刘海瑞. 基于小世界优化的变桨距风电机组神经网络预测控制[J]. 中国电机工程学报, 2012, 32(30):105-111. WANG S X, LI Z X, LIU H R. Neural network predictive control of variable-pitch wind turbines based on small-world optimization algorithm[J]. Proceedings of the CSEE, 2012, 32(30):105-111.
|
[18] |
胡耀垓, 李伟, 胡继明. 一种改进激活函数的人工神经网络及其应用[J]. 武汉大学学报(信息科学版), 2004, 29(10):916-919. HU Y H, LI W, HU J M. An artificial neural network with improved activation function and its application[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10):916-919.
|
[19] |
郭佰胜, 宫宁生. 激活函数可调的RBF神经网络模型[J]. 微计算机信息, 2009, (6):240-241. GUO B S, GONG N S. Trainable activation function RBF neural networks model[J]. Microcomputer Information, 2009, (6):240-241.
|
[20] |
黄毅, 段修生, 孙世宇,等. 基于改进sigmoid激活函数的深度神经网络训练算法研究[J]. 计算机测量与控制, 2017, 25(2):126-129. HUANG Y, DUAN X S, SUN S Y, et al. A study of training algorithm in deep neural network based on sigmoid activation function[J]. Computer Measurement & Control, 2017, 25(2):126-129.
|
[21] |
耿志强, 朱群雄, 顾祥柏,等. 基于多群竞争PSO-RBFNN的乙烯裂解深度智能优化控制[J]. 化工学报, 2010, 61(8):1942-1948. GENG Z Q, ZHU Q X, GU X B, et al. Optimal control of cracking depth based on multi-swarm competitive PSO-RBFNN for ethylene cracking furnace[J]. CIESC Journal, 2010, 61(8):1942-1948.
|
[22] |
安爱民, 刘云利, 张浩琛,等. 微生物燃料电池的动态性能分析及其神经网络预测控制[J]. 化工学报, 2017, 68(3):1090-1098. AN A M, LIU Y L, ZHANG H C, et al. Dynamic performance analysis and neural network predictive control of microbial fuel cell[J]. CIESC Journal, 2017, 68(3):1090-1098.
|
[23] |
PATAN K. Two stage neural network modelling for robust model predictive control[J]. Isa Transactions, 2018, 72:56-65.
|
[24] |
GAMBHIR S, MALIK S K. PSO-ANN based diagnostic model for the early detection of dengue disease[J]. New Horizons in Translational Medicine, 2017, 4(3):1-8.
|
[25] |
孙辉, 朱德刚, 王晖, 等. 自适应子空间高斯学习的粒子群优化算法[J]. 南昌工程学院学报,2015,34(4):31-42. SUN H, ZHU D G, WANG H, et al. Particle swarm optimization based on adaptive subspace Gaussian learning[J]. Journal of Nanchang Institute of Technology, 2015,34(4):31-42.
|
[26] |
LIGHTBODY G, NAMARA P M. Improving distributed model predictive control performance via weight optimization using PSO[J]. IFAC Proceedings Volumes, 2009, 42(19):176-181.
|
[27] |
陈涛, 王珩, 胡昌盛,等. 广义预测控制在600 MW超临界机组协调及汽温控制系统优化中的应用[J]. 中国电力, 2014, 47(2):5-10. CHEN T, WANG H, HU C S. Application of generalized predictive control for 600MW supercritical unit coordinated control and steam temperature control system optimization[J]. Electric Power, 2014, 47(2):5-10.
|