CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1438-1446.DOI: 10.11949/0438-1157.20201865
• Process system engineering • Previous Articles Next Articles
Received:
2020-12-15
Revised:
2020-12-21
Online:
2021-03-05
Published:
2021-03-05
Contact:
QIU Tong
通讯作者:
邱彤
作者简介:
李浩然(1998—),男,博士研究生,基金资助:
CLC Number:
LI Haoran, QIU Tong. Sintering production state prediction model based on causal analysis[J]. CIESC Journal, 2021, 72(3): 1438-1446.
李浩然, 邱彤. 基于因果分析的烧结生产状态预测模型[J]. 化工学报, 2021, 72(3): 1438-1446.
Add to citation manager EndNote|Ris|BibTeX
Item | OV1 | OV2 | OV3 | OV4 | OV5 | OV6 |
---|---|---|---|---|---|---|
SV1 | 0.16 | 0.12 | 0.21 | 0.11 | 0.07 | 0.16 |
SV2 | 0.26 | 0.30 | 0.33 | 0.13 | 0.30 | 0.18 |
SV3 | 0.15 | 0.11 | 0.19 | 0.12 | 0.08 | 0.11 |
SV4 | 0.18 | 0.15 | 0.23 | 0.08 | 0.15 | 0.13 |
SV5 | 0.12 | 0.12 | 0.20 | 0.08 | 0.08 | 0.17 |
SV6 | 0.13 | 0.14 | 0.18 | 0.09 | 0.06 | 0.21 |
SV7 | 0.13 | 0.15 | 0.26 | 0.07 | 0.11 | 0.08 |
SV8 | 0.62 | 0.56 | 0.23 | 0.23 | 0.25 | 0.23 |
SV9 | 0.62 | 0.57 | 0.24 | 0.19 | 0.23 | 0.19 |
Table 1 CMS values of OVs towards SVs
Item | OV1 | OV2 | OV3 | OV4 | OV5 | OV6 |
---|---|---|---|---|---|---|
SV1 | 0.16 | 0.12 | 0.21 | 0.11 | 0.07 | 0.16 |
SV2 | 0.26 | 0.30 | 0.33 | 0.13 | 0.30 | 0.18 |
SV3 | 0.15 | 0.11 | 0.19 | 0.12 | 0.08 | 0.11 |
SV4 | 0.18 | 0.15 | 0.23 | 0.08 | 0.15 | 0.13 |
SV5 | 0.12 | 0.12 | 0.20 | 0.08 | 0.08 | 0.17 |
SV6 | 0.13 | 0.14 | 0.18 | 0.09 | 0.06 | 0.21 |
SV7 | 0.13 | 0.15 | 0.26 | 0.07 | 0.11 | 0.08 |
SV8 | 0.62 | 0.56 | 0.23 | 0.23 | 0.25 | 0.23 |
SV9 | 0.62 | 0.57 | 0.24 | 0.19 | 0.23 | 0.19 |
预测项目 | 平均绝对误差 | 平均相对误差 |
---|---|---|
14# Pressure /kPa | 0.07 | 0.51% |
22# Pressure /kPa | 0.08 | 0.55% |
14# Temprature /℃ | 2.98 | 3.07% |
22# Temprature/℃ | 9.58 | 2.16% |
End# Distance /m | 0.68 | 0.79% |
End# Temprature/℃ | 6.16 | 1.47% |
Table 2 Prediction errors of sintering production state prediction model
预测项目 | 平均绝对误差 | 平均相对误差 |
---|---|---|
14# Pressure /kPa | 0.07 | 0.51% |
22# Pressure /kPa | 0.08 | 0.55% |
14# Temprature /℃ | 2.98 | 3.07% |
22# Temprature/℃ | 9.58 | 2.16% |
End# Distance /m | 0.68 | 0.79% |
End# Temprature/℃ | 6.16 | 1.47% |
1 | 于原浩, 冯根生, 苏东学. 改善烧结矿质量降低高炉炼铁燃耗[J]. 钢铁, 2008, 43(12): 99-102. |
Yu Y H, Feng G S, Su D X. Measures of improving sinter quality and decreasing fuel consumption of Guofeng blast furnace ironmaking[J]. Iron & Steel, 2008, 43(12): 99-102. | |
2 | 侯兴. 烧结矿产质量与炼铁指标的关系[J]. 烧结球团, 1996, 21(4): 48-49. |
Hou X. Relationship between sinter quality and ironmaking target [J]. Sintering and Pelletizing, 1996, 21(4): 48-49. | |
3 | Chen X X, Shi X H, Tong C D. Multi-time-scale TFe prediction for iron ore sintering process with complex time delay[J]. Control Engineering Practice, 2019, 89: 84-93. |
4 | Zhou K L, Chen X, Wu M, et al. A new hybrid modeling and optimization algorithm for improving carbon efficiency based on different time scales in sintering process[J]. Control Engineering Practice, 2019, 91: 104104. |
5 | 胡长庆, 张玉柱, 张春霞. 烧结过程物质流和能量流分析[J]. 烧结球团, 2007, 32(1): 16-21. |
Hu C Q, Zhang Y Z, Zhang C X. Analysis of material flow and energy flow in sintering process[J]. Sintering and Pelletizing, 2007, 32(1): 16-21. | |
6 | 姜丽娟. 烧结漏风率在线软测量模型及诊断专家系统的研究[D]. 长沙: 中南大学, 2012. |
Jiang L J. Research on on-line soft-sensing model and diagnostic expert system of air leakage rate during sintering[D]. Changsha: Central South University, 2012. | |
7 | Zhou H, Zhou M X, Liu Z H, et al. Modeling NOx emission of coke combustion in iron ore sintering process and its experimental validation[J]. Fuel, 2016, 179: 322-331. |
8 | Cheng Z L, Yang J, Zhou L, et al. Sinter strength evaluation using process parameters under different conditions in iron ore sintering process[J]. Applied Thermal Engineering, 2016, 105: 894-904. |
9 | 陈伟, 武鹏飞, 王宝祥, 等. 烧结-高炉炼铁全过程炉料结构智能优化系统[J]. 烧结球团, 2020, 45(5): 8-13, 24. |
Chen W, Wu P F, Wang B X, et al. Intelligent optimization system of burden structure in the whole process of sintering-blast furnace iron-making[J]. Sintering and Pelletizing, 2020, 45(5): 8-13, 24. | |
10 | 尹学, 李绍铭, 闫成忍. 基于GA-PSO-BP神经网络的烧结终点预测模型[J]. 烧结球团, 2020, 45(6): 35-39, 46. |
Yin X, Li S M, Yan C R. Prediction model of BTP based on GA-PSO-BP neural network[J]. Sintering and Pelletizing, 2020, 45(6): 35-39, 46. | |
11 | 刘加达, 于帆, 温治, 等. 基于BPNN和RNN模型的烧结矿质量预测方法对比及分析[J]. 冶金自动化, 2020, 44(5): 20-26. |
Liu J D, Yu F, Wen Z, et al. Comparison and analysis of sinter quality prediction methods based on BPNN and RNN model[J]. Metallurgical Industry Automation, 2020, 44(5): 20-26. | |
12 | 易正明, 邓植丹, 覃佳卓, 等. 基于RBF-BP混合神经网络的烧结烟气NOx预测[J]. 钢铁研究学报, 2020, 32(7): 639-646. |
Yi Z M, Deng Z D, Qin J Z, et al. NOx prediction of sintering flue gas based on RBF-BP hybrid neural network[J]. Journal of Iron and Steel Research, 2020, 32(7): 639-646. | |
13 | 谌晓文, 邬捷鹏. 基于BP神经网络的烧结终点预测模型[J]. 烧结球团, 2006, 31(4): 21-26. |
Chen X W, Wu J P. BTP forecast model based on BP nerve net[J]. Sintering and Pelletizing, 2006, 31(4): 21-26. | |
14 | 汪森辉, 李海峰, 张永杰, 等. 基于改进的AdaBoost.RS算法的烧结终点预报分析[J]. 中国冶金, 2019, 29(10): 13-19. |
Wang S H, Li H F, Zhang Y J, et al. Prediction and analysis of burning though point base on modified AdaBoost.RS algorithm[J]. China Metallurgy, 2019, 29(10): 13-19. | |
15 | 吴连军. 基于排放烟气分析的烧结矿烧结终点预测研究[D]. 太原: 太原理工大学, 2019. |
Wu L J. Study on the prediction of burning through point according to in-time exhaust fume analysis[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
16 | Karlsson M, Brentel J. Autocorrelation function of the polarization-mode dispersion vector[J]. Optics Letters, 1999, 24(14): 939-941. |
17 | Daoud W Z, Kahl J D W, Ghorai J K. On the synoptic-scale Lagrangian autocorrelation function[J]. Journal of Applied Meteorology, 2003, 42(2): 318-324. |
18 | Bauer M, Thornhill N F. A practical method for identifying the propagation path of plant-wide disturbances[J]. Journal of Process Control, 2008, 18(7/8): 707-719. |
19 | Granger C W J. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica, 1969, 37(3): 424. |
20 | Schreiber T. Measuring information transfer[J]. Physical Review Letters, 2000, 85(2): 461-464. |
21 | Vicente R, Wibral M, Lindner M, et al. Transfer entropy—a model-free measure of effective connectivity for the neurosciences[J]. Journal of Computational Neuroscience, 2011, 30(1): 45-67. |
22 | Wibral M, Rahm B, Rieder M, et al. Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks[J]. Progress in Biophysics and Molecular Biology, 2011, 105(1/2): 80-97. |
23 | Ray S, Dey D. Characterization of stator turn to turn faults of induction motor using cross-correlation analysis based features[C]//2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI). Kolkata, India, 2016: 297-301. |
24 | Caccamo M T, Magazù S. Ethylene glycol - polyethylene glycol (EG-PEG) mixtures: infrared spectra wavelet cross-correlation analysis[J]. Applied Spectroscopy, 2017, 71(3): 401-409. |
25 | Yang F, Sirish L S, Xiao D Y. Signed directed graph modeling of industrial processes and their validation by data-based methods[C]//2010 Conference on Control and Fault-Tolerant Systems (SysTol). Nice, France, 2010: 387-392. |
26 | Seth A. Granger causality[J]. Scholarpedia, 2007, 2(7): 1667. |
27 | Barnett L, Barrett A B, Seth A K. Granger causality and transfer entropy are equivalent for Gaussian variables[J]. Physical Review Letters, 2009, 103(23): 238701. |
28 | Sugihara G, May R, Ye H, et al. Detecting causality in complex ecosystems[J]. Science, 2012, 338(6106): 496-500. |
29 | McCracken J M, Weigel R S. Convergent cross-mapping and pairwise asymmetric inference[J]. Physical Review. E,Statistical, Nonlinear, and Soft Matter Physics, 2014, 90(6): 062903. |
30 | Mønster D, Fusaroli R, Tylén K, et al. Causal inference from noisy time-series data—testing the convergent cross-mapping algorithm in the presence of noise and external influence[J]. Future Generation Computer Systems, 2017, 73: 52-62. |
31 | Luo L, Cheng F F, Qiu T, et al. Refined convergent cross-mapping for disturbance propagation analysis of chemical processes[J]. Computers & Chemical Engineering, 2017, 106: 1-16. |
32 | Ye H, Deyle E R, Gilarranz L J, et al. Distinguishing time-delayed causal interactions using convergent cross mapping[J]. Scientific Reports, 2015, 5: 14750. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[3] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[4] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[5] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[6] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[7] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[8] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[9] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[10] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[11] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[12] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
[13] | Yafu LI, Liangliang FU, Haolong BAI, Dingrong BAI, Guangwen XU. The simultaneous synthesis of high-quality forsterite and sintered magnesia from magnesite flotation tailings [J]. CIESC Journal, 2022, 73(8): 3679-3687. |
[14] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
[15] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||