Previous Articles Next Articles
ZHU Litao, LUO Zhenghong
Received:
2018-02-11
Revised:
2018-04-24
Online:
2018-09-05
Published:
2018-09-05
Supported by:
supported by the National Ministry of Science and Technology of China (2017YFB0602401) and the National Natural Science Foundation of China (21776173, 21625603).
朱礼涛, 罗正鸿
通讯作者:
罗正鸿
基金资助:
国家科技部项目(2017YFB0602401);国家自然科学基金项目(21776173,21625603)。
CLC Number:
ZHU Litao, LUO Zhenghong. Application of magnetic resonance imaging to multiphase fluid hydrodynamics[J]. CIESC Journal, DOI: 10.11949/j.issn.0438-1157.20180192.
朱礼涛, 罗正鸿. 磁共振成像应用于多相流体动力学研究进展[J]. 化工学报, DOI: 10.11949/j.issn.0438-1157.20180192.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180192
[1] | GLADDEN L F, ALEXANDER P. Applications of nuclear magnetic resonance imaging in process engineering[J]. Measurement Science and Technology, 1996, 7(3):423-435. |
[2] | FUKUSHIMA E. Nuclear magnetic resonance as a tool to study flow[J]. Annual Review of Fluid Mechanics, 1999, 31(1):95-123. |
[3] | GLADDEN L F. Magnetic resonance:ongoing and future role in chemical engineering research[J]. AIChE Journal, 2003, 49(1):2-9. |
[4] | MÜLLER C R, HOLLAND D J, SEDERMAN A J, et al. Magnetic resonance imaging of fluidized beds[J]. Powder Technology, 2008, 183(1):53-62. |
[5] | HOLLAND D J, MÜLLER C R, SEDERMAN A J, et al. Magnetic resonance imaging of fluidized beds:recent advances[J]. Theoretical Foundations of Chemical Engineering, 2008, 42(5):469-478. |
[6] | EHRICHS E E, JAEGER H M, KARCZMAR G S, et al. Granular convection observed by magnetic resonance imaging[J]. Science, 1995, 267(5204):1632-1634. |
[7] | SAVELSBERG R, DEMCO D E, BLÜMICH B, et al. Particle motion in gas-fluidized granular systems by pulsed-field gradient nuclear magnetic resonance[J]. Physical Review E, 2002, 65(2):020301. |
[8] | HUAN C, YANG X, CANDELA D, et al. NMR experiments on a three-dimensional vibrofluidized granular medium[J]. Physical Review E, 2004, 69(4):041302. |
[9] | FENNELL P S, DAVIDSON J F, DENNIS J S, et al. A study of the mixing of solids in gas-fluidized beds, using ultra-fast MRI[J]. Chemical Engineering Science, 2005, 60(7):2085-2088. |
[10] | MÜLLER C R, DAVIDSON J F, DENNIS J S, et al. Real-time measurement of bubbling phenomena in a three-dimensional gas-fluidized bed using ultrafast magnetic resonance imaging[J]. Physical Review Letters, 2006, 96(15):154504. |
[11] | MÜLLER C R, DAVIDSON J F, DENNIS J S, et al. Rise velocities of bubbles and slugs in gas-fluidised beds:ultra-fast magnetic resonance imaging[J]. Chemical Engineering Science, 2007, 62(1):82-93. |
[12] | HOLLAND D J, MÜLLER C R, DENNIS J S, et al. Magnetic resonance studies of fluidization regimes[J]. Industrial & Engineering Chemistry Research, 2010, 49(12):5891-5899. |
[13] | PORE M, CHANDRASEKERA T C, HOLLAND D J, et al. Magnetic resonance studies of jets in a gas-solid fluidised bed[J]. Particuology, 2012, 10(2):161-169. |
[14] | FABICH H T, SEDERMAN A J, HOLLAND D J, et al. Study of bubble dynamics in gas-solid fluidized beds using ultrashort echo time (UTE) magnetic resonance imaging (MRI)[J]. Chemical Engineering Science, 2017, 172:476-486. |
[15] | BOYCE C M, RICE N P, DAVIDSON J F, et al. Magnetic resonance imaging of gas dynamics in the freeboard of fixed beds and bubbling fluidized beds[J]. Chemical Engineering Science, 2016, 147:13-20. |
[16] | BOYCE C M, PENN A, PRUESSMANN K P, et al. Magnetic resonance imaging of gas-solid fluidization with liquid bridging[J]. AIChE Journal, 2018, 64(8):2958-2971. |
[17] | KÖHL M H, LU G, THIRD J R, et al. Magnetic resonance imaging (MRI) study of jet formation in packed beds[J]. Chemical Engineering Science, 2013, 97(1):406-412. |
[18] | KÖHL M H, LU G, THIRD J R, et al. Magnetic resonance imaging (MRI) of jet height hysteresis in packed beds[J]. Chemical Engineering Science, 2014, 109(1):276-283. |
[19] | 赵喜平. 磁共振成像[M]. 北京:科学出版社, 2004. ZHAO X P. Magnetic Resonance Imaging[M]. Beijing:Science Press, 2004. |
[20] | HAASE A, FRAHM J, MATTHAEI D, et al. FLASH imaging. Rapid NMR imaging using low flip-angle pulses[J]. Journal of Magnetic Resonance, 1986, 67(2):258-266. |
[21] | LJUNGGREN S. A simple graphical representation of Fourier-based imaging methods[J]. Journal of Magnetic Resonance, 1983, 54(2):338-343. |
[22] | MAEDA A, SANO K, YOKOYAMA T. Reconstruction by weighted correlation for MRI with time-varying gradients[J]. IEEE Transactions on Medical Imaging, 1988, 7(1):26-31. |
[23] | NAKAGAWA M, ALTOBELLI S A, CAPRIHAN A, et al. Non-invasive measurements of granular flows by magnetic resonance imaging[J]. Experiments in fluids, 1993, 16(1):54-60. |
[24] | GELDART D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5):285-292. |
[25] | GAO J, XU C, LIN S, et al. Advanced model for turbulent gas-solid flow and reaction in FCC riser reactors[J]. AIChE Journal, 1999, 45(5):1095-1113. |
[26] | WEI F, RAN X, ZHOU R, et al. A dispersion model for fluid catalytic cracking riser and downer reactors[J]. Industrial & Engineering Chemistry Research, 1997, 36(12):5049-5053. |
[27] | LI J, FAN Y P, LU C X, et al. Numerical simulation of influence of feed injection on hydrodynamic behavior and catalytic cracking reactions in a FCC riser under reactive conditions[J]. Industrial & Engineering Chemistry Research, 2013, 52(32):11084-11098. |
[28] | CHEN G Q, LUO Z H. New insights into intraparticle transfer, particle kinetics, and gas-solid two-phase flow in polydisperse fluid catalytic cracking riser reactors under reaction conditions using multi-scale modeling[J]. Chemical Engineering Science, 2014, 109(16):38-52. |
[29] | 梁晓飞, 姚亚, 罗正鸿. 流化催化裂化提升管反应器的CFD-PBM耦合模型:矩方法适用性比较[J]. 化工学报, 2016, 67(8):3224-3233. LIANG X F, YAO Y, LUO Z H. Comparison of suitability of MOMs in solving CFD-PBM coupling model for FCC riser reactors[J]. CIESC Journal, 2016, 67(8):3224-3233. |
[30] | ZHAO Y, LI H, YE M, et al. 3D numerical simulation of a large scale MTO fluidized bed reactor[J]. Industrial & Engineering Chemistry Research, 2013, 52(33):11354-11364. |
[31] | ZHU L T, XIE L, XIAO J, et al. Filtered model for the cold-model gas-solid flow in a large-scale MTO fluidized bed reactor[J]. Chemical Engineering Science, 2016, 143:369-383. |
[32] | ZHU L T, YE M, LUO Z H. Application of filtered model for reacting gas-solid flows and optimization in a large-scale methanol-to-olefin fluidized-bed reactor[J]. Industrial & Engineering Chemistry Research, 2016, 55(46):11887-11899. |
[33] | ZHUANG Y Q, CHEN X M, LUO Z H, et al. CFD-DEM modeling of gas-solid flow and catalytic MTO reaction in a fluidized bed reactor[J]. Computers & Chemical Engineering, 2014, 60:1-16. |
[34] | SEDERMAN A J, GLADDEN L F. Magnetic resonance imaging as a quantitative probe of gas-liquid distribution and wetting efficiency in trickle-bed reactors[J]. Chemical Engineering Science, 2001, 56(8):2615-2628. |
[35] | NGUYEN N L, VAN BUREN V, VON GARNIER A, et al. Application of magnetic resonance imaging (MRI) for investigation of fluid dynamics in trickle bed reactors and of droplet separation kinetics in packed beds[J]. Chemical Engineering Science, 2005, 60(22):6289-6297. |
[36] | GLADDEN L F, ANADON L D, DUNCKLEY C P. Insights into gas-liquid-solid reactors obtained by magnetic resonance imaging[J]. Chemical Engineering Science, 2007, 62(24):6969-6977. |
[37] | LYSOVA A A, KOPTYUG I V, KULIKOV A V. Nuclear magnetic resonance imaging of an operating gas-liquid-solid catalytic fixed bed reactor[J]. Chemical Engineering Journal, 2007, 130(2):101-109. |
[38] | SANKEY M H, HOLLAND D J, SEDERMAN A J, et al. Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds[J]. Journal of Magnetic Resonance, 2009, 196(2):142-148. |
[39] | TAYLER A B, HOLLAND D J, SEDERMAN A J, et al. Exploring the origins of turbulence in multiphase flow using compressed sensing MRI[J]. Physical Review Letters, 2012, 108(26):264505. |
[40] | HOLLAND D J, BLAKE A, TAYLER A B, et al. A Bayesian approach to characterising multi-phase flows using magnetic resonance:application to bubble flows[J]. Journal of Magnetic Resonance, 2011, 209(1):83-87. |
[41] | TAYLER A B, HOLLAND D J, SEDERMAN A J, et al. Applications of ultra-fast MRI to high voidage bubbly flow:measurement of bubble size distributions, interfacial area and hydrodynamics[J]. Chemical Engineering Science, 2012, 71(71):468-483. |
[42] | HOLLAND D J, BLAKE A, TAYLER A B, et al. Bubble size measurement using Bayesian magnetic resonance[J]. Chemical Engineering Science, 2012, 84(52):735-745. |
[43] | MÜLLER C R, HOLLAND D J, SEDERMAN A J, et al. Granular temperature:comparison of magnetic resonance measurements with discrete element model simulations[J]. Powder Technology, 2008, 184(2):241-253. |
[44] | MÜLLER C R, SCOTT S A, HOLLAND D J, et al. Validation of a discrete element model using magnetic resonance measurements[J]. Particuology, 2009, 7(4):297-306. |
[45] | MÜLLER C R, HOLLAND D J, THIRD J R, et al. Multi-scale magnetic resonance measurements and validation of discrete element model simulations[J]. Particuology, 2011, 9(4):330-341. |
[46] | BOYCE C M, OZEL A, RICE N P, et al. Effective particle diameters for simulating fluidization of non-spherical particles:CFD-DEM models vs. MRI measurements[J]. AIChE Journal, 2017, 63(7):2555-2568. |
[47] | 杨宁, 李静海. 化学工程中的介尺度科学与虚拟过程工程:分析与展望[J]. 化工学报, 2014, 65(7):2403-2409. YANG N, LI J H. Mesoscience in chemical engineering and virtual process engineering:analysis and prospect[J]. CIESC Journal, 2014, 65(7):2403-2409. |
[48] | TSUJI Y, KAWAGUCHI T, TANAKA T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1):79-87. |
[49] | FENG Y Q, XU B H, ZHANG S J, et al. Discrete particle simulation of gas fluidization of particle mixtures[J]. AIChE Journal, 2004, 50(8):1713-1728. |
[50] | ANDERSON J D, WENDT J. Computational Fluid Dynamics[M]. New York:McGraw-Hill, 1995. |
[51] | XIE L, LUO Z H. Multiscale computational fluid dynamics-population balance model coupled system of atom transfer radical suspension polymerization in stirred tank reactors[J]. Industrial & Engineering Chemistry Research, 2017, 56(16):4690-4702. |
[52] | PAN H, LIU Q, LUO Z H. Modeling and simulation of particle size distribution behavior in gas-liquid-solid polyethylene fluidized bed reactors[J]. Powder Technology, 2018, 328:95-107. |
[53] | ZHU L T, PAN H, SU Y H, LUO Z H. Effect of particle polydispersity on flow and reaction behaviors of methanol-to-olefins fluidized bed reactors[J]. Industrial & Engineering Chemistry Research, 2017, 56(4):1090-1102. |
[54] | WESTERWEEL J. Fundamentals of digital particle image velocimetry[J]. Measurement Science and Technology, 1997, 8(12):1379. |
[55] | DIJKHUIZEN W V, BOKKERS G A, DEEN N G. Extension of PIV for measuring granular temperature field in dense fluidized beds[J]. AIChE Journal, 2007, 53(1):108-118. |
[56] | CHEN R C, FAN L S. Particle image velocimetry for characterizing the flow structure in three-dimensional gas-liquid-solid fluidized beds[J]. Chemical Engineering Science, 1992, 47(13):3615-3622. |
[57] | CHEN R C, REESE J, FAN L S. Flow structure in a three-dimensional bubble column and three-phase fluidized bed[J]. AIChE Journal, 1994, 40(7):1093-1104. |
[58] | 罗琴, 赵银峰, 叶茂, 等. 电容层析成像在气固流化床测量中的应用[J].化工学报, 2014, 65(7):2504-2512. LUO Q, ZHAO Y F, YE M, et al. In the application of electrical capacitance tomography in the measurement of gas-solid fluidized bed[J]. CIESC Journal, 2014, 65(7):2504-2512. |
[59] | 罗琴, 张玉黎, 赵银峰, 等. ECT测量A类颗粒初始流化特性[J]. 中南大学学报(自然科学版), 2016, 47(11):3916-3921. LUO Q, ZHANG Y L, ZHAO Y F, et al. Measuring minimum fluidization velocity of Geldart particles by use of electrical capacitance tomography[J]. Journal of Central South University (Natural Science Edition), 2016, 47(11):3916-3921. |
[60] | WARSITO W, FAN L S. ECT imaging of three-phase fluidized bed based on three-phase capacitance model[J]. Chemical Engineering Science, 2003, 58(3):823-832. |
[61] | DU B, WARSITO W, FAN L S. ECT studies of the choking phenomenon in a gas-solid circulating fluidized bed[J]. AIChE Journal, 2004, 50(7):1386-1406. |
[62] | MENG F, ZHANG N, WANG W. Virtual experimentation of beam hardening effect in X-ray CT measurement of multiphase flow[J]. Powder Technology, 2009, 194(1):153-157. |
[63] | HEINDEL T J, GRAY J N, JENSEN T C. An X-ray system for visualizing fluid flows[J]. Flow Measurement and Instrumentation, 2008, 19(2):67-78. |
[64] | LIN J S, CHEN M M, CHAO B T. A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds[J]. AIChE Journal, 1985, 31(3):465-473. |
[65] | LUO H P, KEMOUN A, AL-DAHHAN M H, et al. Analysis of photobioreactors for culturing high-value microalgae and cyanobacteria via an advanced diagnostic technique:CARPT[J]. Chemical Engineering Science, 2003, 58(12):2519-2527. |
[66] | HOLLAND D J, MARASHDEH Q, MULLER C R, et al. Comparison of ECVT and MR measurements of voidage in a gas-fluidized bed[J]. Industrial & Engineering Chemistry Research, 2008, 48(1):172-181. |
[67] | CHANDRASEKERA T C, WANG A, HOLLAND D J, et al. A comparison of magnetic resonance imaging and electrical capacitance tomography:an air jet through a bed of particles[J]. Powder Technology, 2012, 227(9):86-95. |
[68] | 田海军, 周云龙, 赵晓明. 气固两相流固相浓度与流速的测量及可视化[J]. 化工进展, 2017, 36(12):4350-4355. TIAN H J, ZHOU Y L, ZHAO X M. Measurement and visualization of concentration and velocity of solid phase in the gas-solid two-phase flow[J]. Chemical Industry and Engineering Progress, 2017, 36(12):4350-4355. |
[69] | KITAJIMA H D, SUNDARESWARAN K S, TEISSEYRE T Z, et al. Comparison of particle image velocimetry and phase contrast MRI in a patient-specific extracardiac total cavopulmonary connection[J]. Journal of Biomechanical Engineering, 2008, 130(4):041004. |
[70] | VAN OOIJ P, GUÉDON A, POELMA C, et al. Complex flow patterns in a real-size intracranial aneurysm phantom:phase contrast MRI compared with particle image velocimetry and computational fluid dynamics[J]. NMR in Biomedicine, 2012, 25(1):14-26. |
[71] | 孟凡勇, 李静海. 便携式CT扫描设备、便携式CT系统和CT检测方法:104007131A[P]. 2014-8-27. MENG F Y, LI J H. Portable CT scanner, system and detection method:104007131A[P]. 2014-8-27. |
[72] | DING J, GIDASPOW D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE Journal, 1990, 36(4):523-538. |
[1] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[4] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[5] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[6] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[7] | Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144. |
[8] | Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061. |
[9] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[10] | Mengbo ZHANG, Linjin LOU, Yirong FENG, Yuting ZHENG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on synthesis of alkylaluminoxanes [J]. CIESC Journal, 2023, 74(2): 525-534. |
[11] | Lin SHENG, Yu CHANG, Jian DENG, Guangsheng LUO. Formation and flow characteristics of ordered bubble swarm in a step T-junction microchannel [J]. CIESC Journal, 2023, 74(1): 416-427. |
[12] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[13] | Jia LUO, Shuangying WU, Lan XIAO, Shiyao ZHOU, Zhili CHEN. Experiment on the effect of impact velocities on the local heat transfer characteristics for successive droplets impacting on heated cylindrical surface [J]. CIESC Journal, 2022, 73(7): 2944-2951. |
[14] | Quan CHEN, Zexi ZHENG, Ran LI, Qicheng SUN, Hui YANG. Measurement of granular temperature during silo flow by speckle visibility spectroscopy [J]. CIESC Journal, 2022, 73(6): 2603-2611. |
[15] | Tianqi TANG, Yurong HE. Effect of magnetic field on the mesoscale structure evolution process in a wet particle fluidized bed [J]. CIESC Journal, 2022, 73(6): 2636-2648. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||