[1] |
LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759):276-279.
|
[2] |
SEO J S, WHANG D, LEE H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis[J]. Nature, 2000, 404(6781):982-986.
|
[3] |
MURRAY L J, DINCA M, LONG J R. Hydrogen storage in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5):1294-1314.
|
[4] |
YAGHI O M, O'KEEFFE M, OCKWIG N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(6941):705-714.
|
[5] |
LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5):1477-1504.
|
[6] |
PARK K S, NI Z, COTE A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences, 2006, 103(27):10186-10191.
|
[7] |
PHAN A, DOONAN C J, URIBE-ROMO F J, et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks[J]. Acc. Chem. Res., 2010, 43(1):58-67.
|
[8] |
YAO J, WANG H. Zeolitic imidazolate framework composite membranes and thin films:synthesis and applications[J]. Chemical Society Reviews, 2014, 43(13):4470-4493.
|
[9] |
HARA N, YOSHIMUNE M, NEGISHI H, et al. Diffusive separation of propylene/propane with ZIF-8 membranes[J]. Journal of Membrane Science, 2014, 450(15):215-223.
|
[10] |
HUANG K, DONG Z, LI Q, et al. Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors[J]. Chemical Communications, 2013, 49(87):10326-10328.
|
[11] |
KWON H T, JEONG H K. Improving propylene/propane separation performance of zeolitic-imidazolate framework ZIF-8 Membranes[J]. Chemical Engineering Science, 2015, 124(3):20-26.
|
[12] |
KWON H T, JEONG H K. Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth[J]. Chemical Communications, 2013, 49(37):3854-3856.
|
[13] |
KWON H T, JEONG H K. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation[J]. Journal of the American Chemical Society, 2013, 135(29):10763-10768.
|
[14] |
LI L, YAO J, CHEN R, et al. Infiltration of precursors into a porous alumina support for ZIF-8 membrane synthesis[J]. Microporous and Mesoporous Materials, 2013, 168(1):15-18.
|
[15] |
PAN Y, LAI Z. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8(ZIF-8) membranes synthesized in aqueous solutions[J]. Chemical Communications, 2011, 47(37):10275-10277.
|
[16] |
PAN Y, LI T, LESTARI G, et al. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes[J]. Journal of membrane science, 2012, 390(15):93-98.
|
[17] |
XU G, YAO J, WANG K, et al. Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel[J]. Journal of Membrane Science, 2011, 385(1):187-193.
|
[18] |
ZHU Y, LIU Q, CARO J, et al. Highly hydrogen-permselective zeolitic imidazolate framework ZIF-8 membranes prepared on coarse and macroporous tubes through repeated synthesis[J]. Separation and Purification Technology, 2015, 146(26):68-74.
|
[19] |
VENNA S R, CARREON M A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation[J]. Journal of the American Chemical Society, 2009, 132(1):76-78.
|
[20] |
JANG E, KIM E, KIM H, et al. Formation of ZIF-8 membranes inside porous supports for improving both their H2/CO2 separation performance and thermal/mechanical stability[J]. Journal of Membrane Science, 2017, 540(15):430-439.
|
[21] |
ZHANG H, JAMES J, ZHAO M, et al. Improving hydrostability of ZIF-8 membranes via surface ligand exchange[J]. Journal of Membrane Science, 2017, 532(15):1-8.
|
[22] |
KONG L, ZHANG X, LIU H, et al. Synthesis of a highly stable ZIF-8 membrane on a macroporous ceramic tube by manual-rubbing ZnO deposition as a multifunctional layer[J]. Journal of Membrane Science, 2015, 490(15):354-363.
|
[23] |
ZHANG X, LIU Y, LI S, et al. New membrane architecture with high performance:ZIF-8 membrane supported on vertically aligned ZnO nanorods for gas permeation and separation[J]. Chemistry of Materials, 2014, 26(5):1975-1981.
|
[24] |
HUANG A, LIU Q, WANG N, et al. Highly hydrogen permselective ZIF-8 membranes supported on polydopamine functionalized macroporous stainless-steel-nets[J]. Journal of Materials Chemistry A, 2014, 2(22):8246-8251.
|
[25] |
RUAN X, ZHANG X, LIAO X, et al. Enhancing mechanical stability and uniformity of 2-D continuous ZIF-8 membranes by Zn (Ⅱ)-doped polydopamine modification[J]. Journal of Membrane Science, 2017, 541(1):101-107.
|
[26] |
LI W, MENG Q, LI X, et al. Non-activation ZnO array as a buffering layer to fabricate strongly adhesive metal-organic framework/PVDF hollow fiber membranes[J]. Chemical Communications, 2014, 50(68):9711-9713.
|
[27] |
LIU Q, WANG N, CARO J, et al. Bio-inspired polydopamine:a versatile and powerful platform for covalent synthesis of molecular sieve membranes[J]. Journal of the American Chemical Society, 2013, 135(47):17679-17682.
|
[28] |
ZHANG X, LIU Y, KONG L, et al. A simple and scalable method for preparing low-defect ZIF-8 tubular membranes[J]. Journal of Materials Chemistry A, 2013, 1(36):10635-10638.
|
[29] |
ZHAN W, KUANG Q, ZHOU J, et al. Semiconductor@metal-organic framework core-shell heterostructures:a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response[J]. Journal of the American Chemical Society, 2013, 135(5):1926-1933.
|
[30] |
FAIREN-JIMENEZ D, MOGGACH S A, WHARMBY M T, et al. Opening the gate:framework flexibility in ZIF-8 explored by experiments and simulations[J]. Journal of the American Chemical Society, 2011, 133(23):8900-8902.
|