CIESC Journal ›› 2016, Vol. 67 ›› Issue (1): 248-257.DOI: 10.11949/j.issn.0438-1157.20151462
Previous Articles Next Articles
BAI Lu, ZHANG Xiangping, DENG Jing, LI Mengdie
Received:
2015-09-16
Revised:
2015-12-11
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Science Fund for Distinguished Young Scholars (21425625).
白璐, 张香平, 邓靓, 李梦蝶
通讯作者:
张香平
基金资助:
国家杰出青年科学基金项目(21425625)。
CLC Number:
BAI Lu, ZHANG Xiangping, DENG Jing, LI Mengdie. Ionic liquids based membranes for CO2 separation: a review[J]. CIESC Journal, 2016, 67(1): 248-257.
白璐, 张香平, 邓靓, 李梦蝶. 离子液体膜材料分离二氧化碳的研究进展[J]. 化工学报, 2016, 67(1): 248-257.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20151462
[1] | HAMMOND G P, AKWE S S O, WILLIAMS S. Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage [J]. Energy, 2011, 36 (2): 975-984. |
[2] | KENARSARI S D, YANG D, JIANG G, et al. Review of recent advances in carbon dioxide separation and capture [J]. RSC Advances, 2013, 3 (45): 22739-22773. |
[3] | SERVICE R F. Choosing a CO2 separation technology [J]. Science, 2004, 305 (5686): 963-963. |
[4] | BRUNETTI A, SCURA F, BARBIERI G, et al. Membrane technologies for CO2 separation [J]. Journal of Membrane Science, 2010, 359 (1/2): 115-125. |
[5] | ROBESON L M. The upper bound revisited [J]. Journal of Membrane Science, 2008, 320 (1/2): 390-400. |
[6] | ROGERS R D, SEDDON K R. Ionic liquids—solvents of the future? [J]. Science, 2003, 302 (5646): 792-793. |
[7] | ESHETU G G, ARMAND M, SCROSATI B, et al. Energy storage materials synthesized from ionic liquids [J]. Angewandte Chemie-international Edition, 2014, 53 (49): 13342-13359. |
[8] | ZHANG S, SUN J, ZHANG X, et al. Ionic liquid-based green processes for energy production [J]. Chemical Society Reviews, 2014, 43 (22): 7838-7869. |
[9] | ZHANG X, ZHANG X, DONG H, et al. Carbon capture with ionic liquids: overview and progress [J]. Energy & Environmental Science, 2012, 5 (5): 6668-6681. |
[10] | RAMDIN M, DE LOOS T W, VLUGT T J H. State-of-the-art of CO2 capture with ionic liquids [J]. Industrial & Engineering Chemistry Research, 2012, 51 (24): 8149-8177. |
[11] | BARA J E, CAMPER D E, GIN D L, et al. Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture [J]. Accounts of Chemical Research, 2010, 43 (1): 152-159. |
[12] | NOBLE R D, GIN D L. Perspective on ionic liquids and ionic liquid membranes [J]. Journal of Membrane Science, 2011, 369 (1/2): 1-4. |
[13] | SCOVAZZO P. Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research [J]. Journal of Membrane Science, 2009, 343 (1/2): 199-211. |
[14] | SCOVAZZO P, KIEFT J, FINAN D A, et al. Gas separations using non-hexafluorophosphate [PF6]- anion supported ionic liquid membranes [J]. Journal of Membrane Science, 2004, 238 (1/2): 57-63. |
[15] | SCOVAZZO P, HAVARD D, MCSHEA M, et al. Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes [J]. Journal of Membrane Science, 2009, 327 (1/2): 41-48. |
[16] | JINDARATSAMEE P, SHIMOYAMA Y, MORIZAKI H, et al. Effects of temperature and anion species on CO2 permeability and CO2/N2 separation coefficient through ionic liquid membranes [J]. Journal of Chemical Thermodynamics, 2011, 43 (3): 311-314. |
[17] | SANTOS E, ALBO J, IRABIEN A. Acetate based supported ionic liquid membranes (SILMs) for CO2 separation: influence of the temperature [J]. Journal of Membrane Science, 2014, 452: 277-283. |
[18] | BARA J E, GIN D L, NOBLE R D. Effect of anion on gas separation performance of polymer-room-temperature ionic liquid composite membranes [J]. Industrial & Engineering Chemistry Research, 2008, 47: 9919-9924. |
[19] | BARA J E, LESSMANN S, GABRIEL C J, et al. Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes [J]. Industrial & Engineering Chemistry Research, 2007, 46 (16): 5397-5404. |
[20] | MULDOON M J, AKI S N V K, ANDERSON J L, et al. Improving carbon dioxide solubility in ionic liquids [J]. Journal of Physical Chemistry B, 2007, 111 (30): 9001-9009. |
[21] | BARA J E, GABRIEL C J, CARLISLE T K, et al. Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes [J]. Chemical Engineering Journal, 2009, 147 (1): 43-50. |
[22] | MAHURIN S M, LEE J S, BAKER G A, et al. Performance of nitrile-containing anions in task-specific ionic liquids for improved CO2/N2 separation [J]. Journal of Membrane Science, 2010, 353 (1/2): 177-183. |
[23] | CARLISLE T K, BARA J E, GABRIEL C J, et al. Interpretation of CO2 solubility and selectivity in nitrile-functionalized room-temperature ionic liquids using a group contribution approach [J]. Industrial & Engineering Chemistry Research, 2008, 47 (18): 7005-7012. |
[24] | BATES E D, MAYTON R D, NTAI I, et al. CO2 capture by a task-specific ionic liquid [J]. Journal of the American Chemical Society, 2002, 124 (6): 926-927. |
[25] | ZHANG J, JIA C, DONG H, et al. A novel dual amino-functionalized cation-tethered ionic liquid for CO2 capture [J]. Industrial & Engineering Chemistry Research, 2013, 52 (17): 5835-5841. |
[26] | MYERS C, PENNLINE H, LUEBKE D, et al. High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes [J]. Journal of Membrane Science, 2008, 322 (1): 28-31. |
[27] | KASAHARA S, KAMIO E, ISHIGAMI T, et al. Amino acid ionic liquid-based facilitated transport membranes for CO2 separation [J]. Chemical Communications, 2012, 48 (55): 6903-6905. |
[28] | HUANG K, ZHANG X M, LI Y X, et al. Facilitated separation of CO2 and SO2 through supported liquid membranes using carboxylate-based ionic liquids [J]. Journal of Membrane Science, 2014, 471: 227-236. |
[29] | JIE X, CHAU J, OBUSKOVIC G, et al. Microporous ceramic tubule based and dendrimer-facilitated immobilized ionic liquid membrane for CO2 separation [J]. Industrial & Engineering Chemistry Research, 2015, 54 (42): 10401-10418. |
[30] | KASAHARA S, KAMIO E, ISHIGAMI T, et al. Effect of water in ionic liquids on CO2 permeability in amino acid ionic liquid-based facilitated transport membranes [J]. Journal of Membrane Science, 2012, 415/416: 168-175. |
[31] | NEVES L A, CRESPO J G, COELHOSO I M. Gas permeation studies in supported ionic liquid membranes [J]. Journal of Membrane Science, 2010, 357 (1/2): 160-170. |
[32] | SHIMOYAMA Y, KOMURO S, JINDARATSAMEE P. Permeability of CO2 through ionic liquid membranes with water vapour at feed and permeate streams [J]. Journal of Chemical Thermodynamics, 2014, 69: 179-185. |
[33] | ZHAO W, HE G, ZHANG L, et al. Effect of water in ionic liquid on the separation performance of supported ionic liquid membrane for CO2/N2 [J]. Journal of Membrane Science, 2010, 350 (1/2): 279-285. |
[34] | HANIOKA S, MARUYAMA T, SOTANI T, et al. CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane [J]. Journal of Membrane Science, 2008, 314 (1/2): 1-4. |
[35] | ZHAO W, HE G, NIE F, et al. Membrane liquid loss mechanism of supported ionic liquid membrane for gas separation [J]. Journal of Membrane Science, 2012, 411: 73-80. |
[36] | KRULL F F, FRITZMANN C, MELIN T. Liquid membranes for gas/vapor separation [J]. Journal of Membrane Science, 2008, 325 (2): 509-519. |
[37] | UCHYTIL P, SCHAUER J, PETRYCHKOVYCH R, et al. Ionic liquid membranes for carbon dioxide-methane separation [J]. Journal of Membrane Science, 2011, 383 (1/2): 262-271. |
[38] | TANG J B, SUN W L, TANG H D, et al. Enhanced CO2 absorption of poly(ionic liquid)s [J]. Macromolecules, 2005, 38 (6): 2037-2039. |
[39] | TANG J B, TANG H D, SUN W L, et al. Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption [J]. Chemical Communications, 2005, (26): 3325-3327. |
[40] | BARA J E, HATAKEYAMA E S, GABRIEL C J, et al. Synthesis and light gas separations in cross-linked gemini room temperature ionic liquid polymer membranes [J]. Journal of Membrane Science, 2008, 316 (1/2): 186-191. |
[41] | BARA J E, GABRIEL C J, LESSMANN S, et al. Enhanced CO2 separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids [J]. Industrial & Engineering Chemistry Research, 2007, 46 (16): 5380-5386. |
[42] | BARA J E, GABRIEL C J, HATAKEYAMA E S, et al. Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents [J]. Journal of Membrane Science, 2008, 321 (1): 3-7. |
[43] | NGUYEN P T, WIESENAUER E F, GIN D L, et al. Effect of composition and nanostructure on CO2/N2 transport properties of supported alkyl-imidazolium block copolymer membranes [J]. Journal of Membrane Science, 2013, 430: 312-320. |
[44] | WIESENAUER E F, PHUC T N, NEWELL B S, et al. Imidazolium-containing, hydrophobic-ionic-hydrophilic abc triblock copolymers: synthesis, ordered phase-separation, and supported membrane fabrication [J]. Soft Matter, 2013, 9 (33): 7923-7927. |
[45] | LI P, COLEMAN M R. Synthesis of room temperature ionic liquids based random copolyimides for gas separation applications [J]. European Polymer Journal, 2013, 49 (2): 482-491. |
[46] | CHI W S, HONG S U, JUNG B, et al. Synthesis, structure and gas permeation of polymerized ionic liquid graft copolymer membranes [J]. Journal of Membrane Science, 2013, 443: 54-61. |
[47] | ANSALONI L, NYKAZA J R, YE Y, et al. Influence of water vapor on the gas permeability of polymerized ionic liquids membranes [J]. Journal of Membrane Science, 2015, 487: 199-208. |
[48] | BARA J E, HATAKEYAMA E S, GIN D L, et al. Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid [J]. Polymers for Advanced Technologies, 2008, 19: 1415-1420. |
[49] | BARA J E, NOBLE R D, GIN D L. Effect of “free” cation substituent on gas separation performance of polymer-room-temperature ionic liquid composite membranes [J]. Industrial & Engineering Chemistry Research, 2009, 48: 4607-4610. |
[50] | TOME L C, GOUVEIA A S L, FREIRE C S R, et al. Polymeric ionic liquid-based membranes: influence of polycation variation on gas transport and CO2 selectivity properties [J]. Journal of Membrane Science, 2015, 486: 40-48. |
[51] | ERDNI-GORYAEV E M, ALENT'EV A Y, BELOV N A, et al. Gas separation characteristics of new membrane materials based on poly(ethylene glycol)-crosslinked polymers and ionic liquids [J]. Petroleum Chemistry, 2012, 52 (7): 494-498. |
[52] | CHEN H Z, LI P, CHUNG T S. Pvdf/ionic liquid polymer blends with superior separation performance for removing CO2 from hydrogen and flue gas [J]. International Journal of Hydrogen Energy, 2012, 37 (16): 11796-11804. |
[53] | KANEHASHI S, KISHIDA M, KIDESAKI T, et al. CO2 separation properties of a glassy aromatic polyimide composite membranes containing high-content 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid [J]. Journal of Membrane Science, 2013, 430: 211-222. |
[54] | LIANG L, GAN Q, NANCARROW P. Composite ionic liquid and polymer membranes for gas separation at elevated temperatures [J]. Journal of Membrane Science, 2014, 450: 407-417. |
[55] | YOO S, WON J, KANG S W, et al. CO2 separation membranes using ionic liquids in a nafion matrix [J]. Journal of Membrane Science, 2010, 363 (1/2): 72-79. |
[56] | 赵薇. 离子液体膜CO2分离性能及稳定性研究[D]. 大连: 大连理工大学, 2012. |
ZHAO W. Stability and performance of ionic liquid membrane for CO2 separation[D]. Dalian: Dalian University of Technology, 2012. | |
[57] | 高思春. 离子液体-PVDF共混CO2分离复合膜的制备优化[D]. 大连: 大连理工大学, 2013. |
GAO S C. Preparation and optimization of ionic liquids-PVDF composite membranes for CO2 separation[D]. Dalian: Dalian University of Technology, 2013. | |
[58] | BERNARDO P, JANSEN J C, BAZZARELLI F, et al. Gas transport properties of pebax®/room temperature ionic liquid gel membranes [J]. Separation and Purification Technology, 2012, 97: 73-82. |
[59] | FRIESS K, JANSEN J C, BAZZARELLI F, et al. High ionic liquid content polymeric gel membranes: correlation of membrane structure with gas and vapour transport properties [J]. Journal of Membrane Science, 2012, 415: 801-809. |
[60] | HONG S U, PARK D, KO Y, et al. Polymer-ionic liquid gels for enhanced gas transport [J]. Chemical Communications, 2009, (46): 7227-7229. |
[61] | RABIEE H, GHADIMI A, MOHAMMADI T. Gas transport properties of reverse-selective poly (ether-b-amide6)/[Emim][BF4] gel membranes for CO2/light gases separation [J]. Journal of Membrane Science, 2015, 476: 286-302. |
[62] | LEE S H, KIM B S, LEE E W, et al. The removal of acid gases from crude natural gas by using novel supported liquid membranes [J]. Desalination, 2006, 200 (1/2/3): 21-22. |
[63] | REZAKAZEMI M, AMOOGHIN A E, MONTAZER-RAHMATI M M, et al. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions [J]. Progress In Polymer Science, 2014, 39 (5): 817-861. |
[64] | HUDIONO Y C, CARLISLE T K, BARA J E, et al. A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials [J]. Journal of Membrane Science, 2010, 350 (1/2): 117-123. |
[65] | HUDIONO Y C, CARLISLE T K, LAFRATE A L, et al. Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation [J]. Journal of Membrane Science, 2011, 370 (1/2): 141-148. |
[66] | MOHSHIM D F, MUKHTAR H, MAN Z. The effect of incorporating ionic liquid into polyethersulfone-SAPO34 based mixed matrix membrane on CO2 gas separation performance [J]. Separation and Purification Technology, 2014, 135: 252-258. |
[67] | SHINDO R, KISHIDA M, SAWA H, et al. Characterization and gas permeation properties of polyimide/ZSM-5 zeolite composite membranes containing ionic liquid [J]. Journal of Membrane Science, 2014, 454: 330-338. |
[68] | HAO L, LI P, YANG T, et al. Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture [J]. Journal of Membrane Science, 2013, 436: 221-231. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[3] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[4] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[5] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[6] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[7] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[8] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[9] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[10] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[11] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[12] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[13] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[14] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[15] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||