CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 366-383.DOI: 10.11949/0438-1157.20201146
• Reviews and monographs • Previous Articles Next Articles
WANG Chenlu(),WANG Yanlei(),ZHAO Qiu,LYU Yumiao,HUO Feng,HE Hongyan()
Received:
2020-08-10
Revised:
2020-10-13
Online:
2021-01-05
Published:
2021-01-05
Contact:
WANG Yanlei,HE Hongyan
通讯作者:
王艳磊,何宏艳
作者简介:
王琛璐(1995—),女,博士研究生,基金资助:
CLC Number:
WANG Chenlu, WANG Yanlei, ZHAO Qiu, LYU Yumiao, HUO Feng, HE Hongyan. Research progress of low-dimensional nanoconfined ionic liquids[J]. CIESC Journal, 2021, 72(1): 366-383.
王琛璐, 王艳磊, 赵秋, 吕玉苗, 霍锋, 何宏艳. 低维纳米受限离子液体的研究进展[J]. 化工学报, 2021, 72(1): 366-383.
Add to citation manager EndNote|Ris|BibTeX
1 | Dong K, Liu X M, Dong H F, et al. Multiscale studies on ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6636-6695. |
2 | Hapiot P, Lagrost C. Electrochemical reactivity in room-temperature ionic liquids[J]. Chemical Reviews, 2008, 108(7): 2238-2264. |
3 | Rogers R D, Seddon K R. Ionic liquids - Solvents of the future?[J]. Science, 2003, 302(5646): 792-793. |
4 | Dong K, Zhang S J, Wang J J. Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions[J]. Chemical Communications, 2016, 52(41): 6744-6764. |
5 | 曾少娟, 尚大伟, 余敏, 等. 离子液体在氨气分离回收中的应用及展望[J]. 化工学报, 2019, 70(3): 791-800. |
Zeng S J, Shang D W, Yu M, et al. Applications and perspectives of NH3 separation and recovery with ionic liquids[J]. CIESC Journal, 2019, 70(3): 791-800. | |
6 | 吴智伟, 丁伟璐, 张雅琴, 等. 咪唑类离子液体与酪氨酸相互作用及机理的密度泛函理论研究[J]. 物理化学学报, 2020, 36:2002021. |
Wu Z W, Ding W L, Zhang Y Q, et al. Interaction and mechanism between imidazolium ionic liquids and the zwitterionic amino acid tyr: a DFT study[J]. Acta Physico-Chimica Sinica, 2020, 36: 2002021. | |
7 | Ying W, Cai J S, Zhou K, et al. Ionic liquid selectively facilitates CO2 transport through graphene oxide membrane[J]. ACS Nano, 2018, 12(6): 5385-5393. |
8 | Zeng S J, Zhang X P, Bai L, et al. Ionic-liquid-based CO2 capture systems: structure, interaction and process[J]. Chemical Reviews, 2017, 117(14): 9625-9673. |
9 | Tian Z Q, Mahurin S M, Dai S, et al. Ion-gated gas separation through porous graphene[J]. Nano Letters, 2017, 17(3): 1802-1807. |
10 | Sezginel K B, Keskin S, Uzun A. Tuning the gas separation performance of CuBTC by ionic liquid incorporation[J]. Langmuir, 2016, 32(4): 1139-1147. |
11 | 崔国凯, 吕书贞, 王键吉. 功能化离子液体在二氧化碳吸收分离中的应用[J]. 化工学报, 2020, 71(1): 16-25. |
Cui G K, Lyu S Z, Wang J J. Functional ionic liquids for carbon dioxide capture and separation[J]. CIESC Journal, 2020, 71(1): 16-25. | |
12 | She Z M, Ghosh D, Pope M A. Decorating graphene oxide with ionic liquid nanodroplets: an approach leading to energy-dense, high-voltage supercapacitors[J]. ACS Nano, 2017, 11(10): 10077-10087. |
13 | van Aken K L, Beidaghi M, Gogotsi Y. Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors[J]. Angewandte Chemie-International Edition, 2015, 54(16): 4806-4809. |
14 | Kim T Y, Lee H W, Stoller M, et al. High-Performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes[J]. ACS Nano, 2011, 5(1): 436-442. |
15 | Zhao D, Fabiano S, Berggren M, et al. Ionic thermoelectric gating organic transistors[J]. Nature Communications, 2017, 8: 14214 |
16 | Wang F M, Stepanov P, Gray M, et al. Ionic liquid gating of suspended MoS2 field effect transistor devices[J]. Nano Letters, 2015, 15(8): 5284-5288. |
17 | Zeeshan M, Nozari V, Yagci M B, et al. Core-shell type ionic liquid/metal organic framework composite: an exceptionally high CO2/CH4 selectivity[J]. Journal of the American Chemical Society, 2018, 140(32): 10113-10116. |
18 | Thomas A, Maiyelvaganan K R, Kamalakannan S, et al. Density functional theory studies on zeolitic imidazolate framework-8 and ionic liquid-based composite materials[J]. ACS Omega, 2019, 4(27): 22655-22666. |
19 | Park K S, Ni Z, Cote A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186-10191. |
20 | Marion S, Davis S J, Wu Z Q, et al. Nanocapillary confinement of imidazolium based ionic liquids[J]. Nanoscale, 2020, 12(16): 8867-8874. |
21 | Davenport M, Rodriguez A, Shea K J, et al. Squeezing ionic liquids through nanopores[J]. Nano Letters, 2009, 9(5): 2125-2128. |
22 | Ghoufi A, Szymczyk A, Malfreyt P. Ultrafast diffusion of ionic liquids confined in carbon nanotubes[J]. Scientific Reports, 2016, 6: 28518. |
23 | Berrod Q, Ferdeghini F, Judeinstein P, et al. Enhanced ionic liquid mobility induced by confinement in 1D CNT membranes[J]. Nanoscale, 2016, 8(15): 7845-7848. |
24 | Chen S M, Lim H E, Miyata Y, et al. Transformation of ionic liquid into carbon nanotubes in confined nanospace[J]. Chemical Communications, 2011, 47(37): 10368-10370. |
25 | Wang Y L, Huo F, He H Y, et al. The confined BmimBF4 ionic liquid flow through graphene oxide nanochannels: a molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2018, 20(26): 17773-17780. |
26 | Wang Y L, Wang C L, Zhang Y Q, et al. Molecular insights into the regulatable interfacial property and flow behavior of confined ionic liquids in graphene nanochannels[J]. Small, 2019, 15(29): 1804508. |
27 | Wang C L, Wang Y L, Lu Y M, et al. Height-driven structure and thermodynamic properties of confined ionic liquids inside carbon nanochannels from molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2019, 21(24): 12767-12776. |
28 | Lu Y M, Chen W, Wang Y L, et al. A space-confined strategy toward large-area two-dimensional crystals of ionic liquid[J]. Physical Chemistry Chemical Physics, 2020, 22(4): 1820-1825. |
29 | Ying W, Peng X S. Graphene oxide nanoslit-confined AgBF4/ionic liquid for efficiently separating olefin from paraffin[J]. Nanotechnology, 2020, 31(8): 6. |
30 | Ying W, Han B W, Lin H Q, et al. Laminated mica nanosheets supported ionic liquid membrane for CO2 separation[J]. Nanotechnology, 2019, 30(38): 385705. |
31 | Ying W, Zhou K, Hou Q G, et al. Selectively tuning gas transport through ionic liquid filled graphene oxide nanoslits using an electric field[J]. Journal of Materials Chemistry A, 2019, 7(25): 15062-15067. |
32 | Ying W, Hou Q G, Chen D K, et al. Electrical field facilitates selective transport of CO2 through a laminated MoS2 supported ionic liquid membrane[J]. Journal of Materials Chemistry A, 2019, 7(16): 10041-10046. |
33 | Chen D K, Wang W S, Ying W, et al. CO2-philic WS2 laminated membranes with a nanoconfined ionic liquid[J]. Journal of Materials Chemistry A, 2018, 6(34): 16566-16573. |
34 | Chen D K, Ying W, Guo Y, et al. Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44251-44257. |
35 | Lin H, Gong K, Ying W, et al. CO2-philic separation membrane: deep eutectic solvent filled graphene oxide nanoslits[J]. Small, 2019, 15(49): 1904145. |
36 | Xu Q X, Yang F, Zhang X P, et al. Combining ionic liquids and sodium salts into metal-organic framework for high-performance ionic conduction[J]. ChemElectroChem, 2020, 7(1): 183-190. |
37 | Xu Q X, Zhang X P, Zeng S J, et al. Ionic liquid incorporated metal organic framework for high ionic conductivity over extended temperature range[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7892-7899. |
38 | Lan Y S, Yan T A, Tong M M, et al. Large-scale computational assembly of ionic liquid/MOF composites: synergistic effect in the wire-tube conformation for efficient CO2/CH4 separation[J]. Journal of Materials Chemistry A, 2019, 7(20): 12556-12564. |
39 | Rajput N N, Monk J, Hung F R. Ionic liquids confined in a realistic activated carbon model: a molecular simulation study[J]. Journal of Physical Chemistry C, 2014, 118(3): 1540-1553. |
40 | Tian Z Q, Dai S, Jiang D E. Confined ionic liquid in an ionic porous aromatic framework for gas separation[J]. ACS Applied Polymer Materials, 2019, 1(1): 95-102. |
41 | Beattie D A, Espinosa-Marzal R M, Ho T T M, et al. Molecularly-thin precursor films of imidazolium-based ionic liquids on mica[J]. Journal of Physical Chemistry C, 2013, 117(45): 23676-23684. |
42 | Gong X, Wang B C, Li L. Spreading of nanodroplets of ionic liquids on the mica surface[J]. ACS Omega, 2018, 3(12): 16398-16402. |
43 | Wang Z T, Priest C. Impact of nanoscale surface heterogeneity on precursor film growth and macroscopic spreading of [Rmim][NTf2] ionic liquids on mica[J]. Langmuir, 2013, 29(36): 11344-11353. |
44 | Wang C L, Qian C, Li Z, et al. Molecular insights into the abnormal wetting behavior of ionic liquids induced by the solidified ionic layer[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 8028-8036. |
45 | Qian C, Wang Y L, He H Y, et al. Lower limit of interfacial thermal resistance across the interface between an imidazolium ionic liquid and solid surface[J]. Journal of Physical Chemistry C, 2018, 122(38): 22194-22200. |
46 | Castejon H J, Wynn T J, Marcin Z M. Wetting and tribological properties of ionic liquids[J]. Journal of Physical Chemistry B, 2014, 118(13): 3661-3668. |
47 | Herrera C, Garcia G, Atilhan M, et al. Nanowetting of graphene by ionic liquid droplets[J]. Journal of Physical Chemistry C, 2015, 119(43): 24529-24537. |
48 | Zhang S G, Zhang J H, Zhang Y, et al. Nanoconfined ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6755-6833. |
49 | Xie Q, Xin F, Park H G, et al. Ion transport in graphene nanofluidic channels[J]. Nanoscale, 2016, 8(47): 19527-19535. |
50 | Kalman E B, Vlassiouk I, Siwy Z S. Nanofluidic bipolar transistors[J]. Advanced Materials, 2008, 20(2): 293-297. |
51 | Karnik R, Duan C H, Castelino K, et al. Rectification of ionic current in a nanofluidic diode[J]. Nano Letters, 2007, 7(3): 547-551. |
52 | Borghi F, Podesta A. Ionic liquids under nanoscale confinement[J]. Advances in Physics-X, 2020, 5(1): 1736949. |
53 | Gao N W, He Y L, Tao X L, et al. Crystal-confined freestanding ionic liquids for reconfigurable and repairable electronics[J]. Nature Communications, 2019, 10(1): 547. |
54 | Singh M P, Singh R K, Chandra S. Ionic liquids confined in porous matrices: physicochemical properties and applications[J]. Progress in Materials Science, 2014, 64: 73-120. |
55 | Lahrar E H, Belhboub A, Simon P, et al. Ionic liquids under confinement: from systematic variations of the ion and pore sizes toward an understanding of the structure and dynamics in complex porous carbons[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1789-1798. |
56 | Mohammadpour F, Dokoohaki M H, Zolghadr A R, et al. Confinement of aqueous mixtures of ionic liquids between amorphous TiO2 slit nanopores: electrostatic field induction[J]. Physical Chemistry Chemical Physics, 2018, 20(46): 29493-29502. |
57 | Dou H Z, Jiang B, Xu M, et al. Boron nitride membranes with a distinct nanoconfinement effect for efficient ethylene/ethane separation[J]. Angewandte Chemie-International Edition, 2019, 58(39): 13969-13975. |
58 | Xie G X, Luo J B, Guo D, et al. Nanoconfined ionic liquids under electric fields[J]. Applied Physics Letters, 2010, 96(4): 3. |
59 | Zhang S J, Wang Y L, He H Y, et al. A new era of precise liquid regulation: Quasi-liquid[J]. Green Energy & Environment, 2017, 2(4): 329-330. |
60 | Whitby M, Quirke N. Fluid flow in carbon nanotubes and nanopipes[J]. Nature Nanotechnology, 2007, 2(2): 87-94. |
61 | Rossi M P, Ye H H, Gogotsi Y, et al. Environmental scanning electron microscopy study of water in carbon nanopipes[J]. Nano Letters, 2004, 4(5): 989-993. |
62 | Atkin R, Warr G G. Structure in confined room-temperature ionic liquids[J]. Journal of Physical Chemistry C, 2007, 111(13): 5162-5168. |
63 | Seddon J R T. Conservative and dissipative interactions of ionic liquids in nanoconfinement[J]. Journal of Physical Chemistry C, 2014, 118(38): 22197-22201. |
64 | Hayes R, Abedin S Z EI, Atkin R. Pronounced structure in confined aprotic room-temperature ionic liquids[J]. Journal of Physical Chemistry B, 2009, 113(20): 7049-7052. |
65 | Gong X, Kozbial A, Rose F, et al. Effect of π-π+ stacking on the layering of ionic liquids confined to an amorphous carbon surface[J]. ACS Applied Materials & Interfaces, 2015, 7(13): 7078-7081. |
66 | Sheehan A, Jurado L A, Ramakrishna S N, et al. Layering of ionic liquids on rough surfaces[J]. Nanoscale, 2016, 8(7): 4094-4106. |
67 | Meusel M, Lexow M, Gezmis A, et al. Atomic force and scanning tunneling microscopy of ordered ionic liquid wetting layers from 110 K up to room temperature[J]. ACS Nano, 2020, 14(7): 9000-9010. |
68 | Galluzzi M, Bovio S, Milani P, et al. Surface confinement induces the formation of solid-like insulating ionic liquid nanostructures[J]. Journal of Physical Chemistry C, 2018, 122(14): 7934-7944. |
69 | Comtet J, Nigues A, Kaiser V, et al. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening[J]. Nature Materials, 2017, 16(6): 634-639. |
70 | Atkin R, Borisenko N, Drueschler M, et al. An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate/Au(111) interface: potential dependent solvation layers and the herringbone reconstruction[J]. Physical Chemistry Chemical Physics, 2011, 13(15): 6849-6857. |
71 | Jiang F L, Li C, Fu H Y, et al. Temperature-induced molecular rearrangement of an ionic liquid confined in nanospaces: an in situ X-ray absorption fine structure study[J]. Journal of Physical Chemistry C, 2015, 119(39): 22724-22731. |
72 | Fujie K, Yamada T, Ikeda R, et al. Introduction of an ionic liquid into the micropores of a metal-organic framework and its anomalous phase behavior[J]. Angewandte Chemie-International Edition, 2014, 53(42): 11302-11305. |
73 | Neouze M A, Le Bideau J, Leroux F, et al. A route to heat resistant solid membranes with performances of liquid electrolytes[J]. Chemical Communications, 2005, (8): 1082-1084. |
74 | Nayeri M, Aronson M T, Bernin D, et al. Surface effects on the structure and mobility of the ionic liquid C6C1ImTFSI in silica gels[J]. Soft Matter, 2014, 10(30): 5618-5627. |
75 | Le Bideau J, Gaveau P, Bellayer S, et al. Effect of confinement on ionic liquids dynamics in monolithic silica ionogels: 1H NMR study[J]. Physical Chemistry Chemical Physics, 2007, 9(40): 5419-5422. |
76 | Waechtler M, Sellin M, Stark A, et al. 2H and 19F solid-state NMR studies of the ionic liquid [C2Py][BTA]-d10 confined in mesoporous silica materials[J]. Physical Chemistry Chemical Physics, 2010, 12(37): 11371-11379. |
77 | Forse A C, Griffin J M, Merlet C, et al. NMR study of ion dynamics and charge storage in ionic liquid supercapacitors[J]. Journal of the American Chemical Society, 2015, 137(22): 7231-7242. |
78 | Chen S M, Kobayashi K, Miyata Y, et al. Morphology and melting behavior of ionic liquids inside single-walled carbon nanotubes[J]. Journal of the American Chemical Society, 2009, 131(41): 14850-14856. |
79 | Chen S M, Wu G Z, Sha M L, et al. Transition of ionic liquid [bmim][PF6] from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes[J]. Journal of the American Chemical Society, 2007, 129(9): 2416-2417. |
80 | Romanos G E, Stefanopoulos K L, Vangeli O C, et al.: Investigation of physically and chemically ionic liquid confinement in nanoporous materials by a combination of SANS, contrast-matching SANS, XRD and nitrogen adsorption[C]//5th European Conference on Neutron Scattering, 2012. |
81 | Arellano I H, Madani S H, Huang J, et al. Carbon dioxide adsorption by zinc-functionalized ionic liquid impregnated into bio-templated mesoporous silica beads[J]. Chemical Engineering Journal, 2016, 283: 692-702. |
82 | Wu C M, Lin S Y. Close packing existence of short-chain ionic liquid confined in the nanopore of silica lonogel[J]. Journal of Physical Chemistry C, 2015, 119(22): 12335-12344. |
83 | Ohba T, Hata K, Chaban V V. Nanocrystallization of imidazolium ionic liquid in carbon nanotubes[J]. Journal of Physical Chemistry C, 2015, 119(51): 28424-28429. |
84 | Lynden-Bell R M, Del Popolo M G, Youngs T G A, et al. Simulations of ionic liquids, solutions, and surfaces[J]. Accounts of Chemical Research, 2007, 40(11): 1138-1145. |
85 | Wang Y T, Jiang W, Yan T Y, et al. Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations[J]. Accounts of Chemical Research, 2007, 40(11): 1193-1199. |
86 | Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16 Rev. B.01. Wallingford, CT, 2016. |
87 | Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. |
88 | Vucemilovic-Alagic N, Banhatti R D, Stepic R, et al. Insights from molecular dynamics simulations on structural organization and diffusive dynamics of an ionic liquid at solid and vacuum interfaces[J]. Journal of Colloid and Interface Science, 2019, 553: 350-363. |
89 | Rajput N N, Monk J, Hung F R. Structure and dynamics of an ionic liquid confined inside a charged slit graphitic nanopore[J]. Journal of Physical Chemistry C, 2012, 116(27): 14504-14513. |
90 | Sha M L, Dou Q, Wu G Z. Molecular dynamics simulation of ionic liquids adsorbed onto a solid surface and confined in nanospace[J]. Chemical Modelling: Applications and Theory, 2012, 9: 186-217. |
91 | Li S, Han K S, Feng G, et al. Dynamic and structural properties of room-temperature ionic liquids near silica and carbon surfaces[J]. Langmuir, 2013, 29(31): 9744-9749. |
92 | Gao J P, Luedtke W D, Landman U. Layering transitions and dynamics of confined liquid films[J]. Physical Review Letters, 1997, 79(4): 705-708. |
93 | Seeck O H, Kim H, Lee D R, et al. Observation of thickness quantization in liquid films confined to molecular dimension[J]. Europhysics Letters, 2002, 60(3): 376-382. |
94 | Ohba T, Chaban V V. A highly viscous imidazolium ionic liquid inside carbon nanotubes[J]. Journal of Physical Chemistry B, 2014, 118(23): 6234-6240. |
95 | Singh R, Monk J, Hung F R. A computational study of the behavior of the ionic liquid [BMIM+][PF6-] confined inside multiwalled carbon nanotubes[J]. Journal of Physical Chemistry C, 2010, 114(36): 15478-15485. |
96 | Akbarzadeh H, Abbaspour M, Salemi S, et al. Investigation of the melting of ionic liquid [emim][PF6] confined inside carbon nanotubes using molecular dynamics simulations[J]. RSC Advances, 2015, 5(5): 3868-3874. |
97 | Dong K, Zhou G H, Liu X M, et al. Structural evidence for the ordered crystallites of ionic liquid in confined carbon nanotubes[J]. Journal of Physical Chemistry C, 2009, 113(23): 10013-10020. |
98 | Dou Q, Sha M L, Fu H Y, et al. Melting transition of ionic liquid [bmim][PF6] crystal confined in nanopores: a molecular dynamics simulation[J]. Journal of Physical Chemistry C, 2011, 115(39): 18946-18951. |
99 | Mo T M, Bi S, Zhang Y, et al. Ion structure transition enhances charging dynamics in subnanometer pores[J]. ACS Nano, 2020, 14(2): 2395-2403. |
100 | Pinilla C, Del Popolo M G, Lynden-Bell R M, et al. Structure and dynamics of a confined ionic liquid. topics of relevance to dye-sensitized solar cells[J]. Journal of Physical Chemistry B, 2005, 109(38): 17922-17927. |
101 | Sha M L, Wu G Z, Fang H P, et al. Liquid-to-solid phase transition of a 1,3-dimethylimidazolium chloride ionic liquid monolayer confined between graphite walls[J]. Journal of Physical Chemistry C, 2008, 112(47): 18584-18587. |
102 | Chaban V V, Prezhdo O V. Nanoscale carbon greatly enhances mobility of a highly viscous ionic liquid[J]. ACS Nano, 2014, 8(8): 8190-8197. |
103 | Kowsari M H, Alavi S, Ashrafizaadeh M, et al. Molecular dynamics simulation of imidazolium-based ionic liquids(Ⅱ): Transport coefficients[J]. Journal of Chemical Physics, 2009, 130(1): 147. |
104 | Kowsari M H, Alavi S, Ashrafizaadeh M, et al. Molecular dynamics simulation of imidazolium-based ionic liquids(Ⅰ): Dynamics and diffusion coefficient[J]. Journal of Chemical Physics, 2008, 129(22): 2038. |
105 | Kondrat S, Wu P, Qiao R, et al. Accelerating charging dynamics in subnanometre pores[J]. Nature Materials, 2014, 13(4): 387-393. |
106 | Coasne B, Viau L, Vioux A. Loading-controlled stiffening in nanoconfined ionic liquids[J]. Journal of Physical Chemistry Letters, 2011, 2(10): 1150-1154. |
107 | Jiang X K, Huang J S, Sumpter B G, et al. Electro-induced dewetting and concomitant ionic current avalanche in nanopores[J]. Journal of Physical Chemistry Letters, 2013, 4(18): 3120-3126. |
108 | Huang J Y, Lo Y C, Niu J J, et al. Nanowire liquid pumps[J]. Nature Nanotechnology, 2013, 8(4): 277-281. |
109 | Shin J H, Kim G H, Kim I, et al. Ionic liquid flow along the carbon nanotube with DC electric field[J]. Scientific Reports, 2015, 5(1): 13325. |
110 | Wu N H, Ji X Y, Xie W L, et al. Confinement phenomenon effect on the CO2 absorption working capacity in ionic liquids immobilized into porous solid supports[J]. Langmuir, 2017, 33(42): 11719-11726. |
111 | Kang S W, Char K, Kang Y S. Novel application of partially positively charged silver nanoparticles for facilitated transport in olefin/paraffin separation membranes[J]. Chemistry of Materials, 2008, 20(4): 1308-1311. |
112 | Riisager A, Fehrmann R, Haumann M, et al. Stability and kinetic studies of supported ionic liquid phase catalysts for hydroformylation of propene[J]. Industrial & Engineering Chemistry Research, 2005, 44(26): 9853-9859. |
113 | Fan J, Yu C Z, Lei J, et al. Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores[J]. Journal of the American Chemical Society, 2005, 127(31): 10794-10795. |
114 | Su Q, Qi Y Q, Yao X Q, et al. Ionic liquids tailored and confined by one-step assembly with mesoporous silica for boosting the catalytic conversion of CO2 into cyclic carbonates[J]. Green Chemistry, 2018, 20(14): 3232-3241. |
115 | Steinrueck H P, Libuda J, Wasserscheid P, et al. Surface science and model catalysis with ionic liquid-modified materials[J]. Advanced Materials, 2011, 23(22-23): 2571-2587. |
116 | Kernchen U, Etzold B, Korth W, et al. Solid catalyst with ionic liquid layer (SCILL) — a new concept to improve selectivity illustrated by hydrogenation of cyclooctadiene[J]. Chemical Engineering & Technology, 2007, 30(8): 985-994. |
117 | Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763. |
118 | Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130(9): 2730-2731. |
119 | Feng G, Cummings P T. Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size[J]. Journal of Physical Chemistry Letters, 2011, 2(22): 2859-2864. |
120 | Wang Y L, Qian C, Huo F, et al. Molecular mechanism of anion size regulating the nanostructure and charging process at ionic liquid-electrode interfaces[J]. Journal of Materials Chemistry A, 2020, 8: 19908-19916. |
121 | Bi S, Banda H, Chen M, et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes[J]. Nature Materials, 2020, 19(5): 552-558. |
122 | Yao M, Liu A, Xing C, et al. Asymmetric supercapacitor comprising a core-shell TiNb2O7@MoS2/C anode and a high voltage ionogel electrolyte[J]. Chemical Engineering Journal, 2020, 394(15): 124883. |
123 | Lian C, Janssen M, Liu H L, et al. Blessing and curse: how a supercapacitor's large capacitance causes its slow charging[J]. Physical Review Letters, 2020, 124(7): 076001. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[4] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[5] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[6] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[7] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[8] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[9] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[10] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[11] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[12] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[13] | Xiaoyu YAO, Jun SHEN, Jian LI, Zhenxing LI, Huifang KANG, Bo TANG, Xueqiang DONG, Maoqiong GONG. Research progress in measurement methods in vapor-liquid critical properties of mixtures [J]. CIESC Journal, 2023, 74(5): 1847-1861. |
[14] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
[15] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||