[1] |
ZHANG B, WANG T H, LIU S L, et al. Structure and morphology of microporous carbon membrane materials derived from poly (phthalazinone ether sulfone ketone)[J]. Microporous and Mesoporous Materials,2006, 96(1):79-83.
|
[2] |
ISMAIL A F, DAVID L I B. A review on the latest development of carbon membranes for gas separation[J]. Journal of Membrane Science,2001, 193(1):1-18.
|
[3] |
SUN P Z, WANG K L, ZHU H W. Recent developments in graphene-based membranes:structure, mass-transport mechanism and potential applications[J]. Advanced Materials, 2016, 28(12):2287-2310
|
[4] |
LIU G P, JIN W Q, XU N P. Graphene-based membranes[J]. Chemical Society Reviews, 2015, 44(15):5016-5030.
|
[5] |
PARK S, RUOFF R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4):217-224.
|
[6] |
DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1):228-240.
|
[7] |
EIGLER S, HIRSCH A. Chemistry with graphene and graphene oxide-challenges for synthetic chemists[J]. Angewandte Chemie International Edition, 2014, 53(30):7720-7738.
|
[8] |
KIM H W, YOON H W, YOON S M, et al. Selective gas transport through few-layered graphene and graphene oxide membranes[J]. Science,2013, 342(6154):91-95.
|
[9] |
LI H, SONG Z N, ZHANG X J, et al. Ultrathin molecular-sieving graphene oxide membranes for selective hydrogen separation[J]. Science, 2013, 342(6154):95-98.
|
[10] |
SHEN J, LIU G P, HUANG K, et al. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture[J]. Angewandte Chemie-International Edition, 2015, 54(2):578-582.
|
[11] |
GOMEZ-NAVARRO C, MEYER J C, SUNDARAM R S, et al. Atomic structure of reduced graphene oxide[J]. Nano Letters, 2010, 10(4):1144-1148.
|
[12] |
ERIKSON K, ERNI R, LEE Z, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials, 2010, 22(40):4467-4472.
|
[13] |
PACILÉ D, MEYER J C, FRAILE R A, et al. Electronic properties and atomic structure of graphene oxide membranes[J]. Carbon, 2011, 49(3):966-972.
|
[14] |
ROMANOS G, PASTRANA-MARTÍNEZ L M, TSOUFIS T, et al. A facile approach for the development of fine-tuned self-standing graphene oxide membranes and their gas and vapor separation performance[J]. Journal of Membrane Science, 2015, 493:734-747.
|
[15] |
NAIR R R, WU H A, JAYARAM P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067):442-444.
|
[16] |
DÍEZ-BETRIU X, MOMPEÁN F J, MUNUERA C, et al. Graphene-oxide stacking and defects in few-layer films:impact of thermal and chemical reduction[J]. Carbon, 2014, 80:40-49.
|
[17] |
HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339.
|
[18] |
KOVTYUKHOVA N I, OLLIVIER P J, MARTIN B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chemistry of Materials, 1999, 11(3):771-778.
|
[19] |
LERF A, HE H Y, FORSTER M, et al. Structure of graphite oxide revisited[J]. The Journal of Physical Chemistry B, 1998, 102(23):4477-4482.
|
[20] |
EIGLER S, GRIMM S, HIRSH A. Investigation of the thermal stability of the carbon framework of graphene oxide[J]. Chemistry-A European Journal, 2014, 20(4):984-989.
|
[21] |
AMBROSI A, WONG G K S, WEBSTER R D, et al. Carcinogenic organic residual compounds readsorbed on thermally reduced graphene materials are released at low temperature[J]. Chemistry-A European Journal, 2013, 19(43):14446-14450.
|
[22] |
GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
|