[1] |
杨秋怡, 韩云峰, 金宁德. 聚合物作用下油水两相流油泡时频运动特性[J]. 工程热物理学报, 2016, 37(27):2582-2589. YANG Q Y, Han Y F, JIN N D. Time-frequency characteristic of oil droplets in oil-water two-phase flow with polymer addition[J]. Journal of Engineering Thermophysis, 2016, 37(37):2582-2589.
|
[2] |
LAN J, SHEN L H. Wavelet analysis of pressure fluctuation in a bubbling fluidized bed[J]. Boiler Technology, 2003, 34(4):42-46.
|
[3] |
GAO Z, JIN N. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks[J]. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2009, 79(6):066303.
|
[4] |
周云龙, 顾杨杨. 基于独立分量分析和RBF神经网络的气液两相流流型识别[J]. 化工学报, 2012, 63(3):796-799. ZHOU Y L, GU Y Y. Flow regime identification of gas-liquid twophase flow based ICA and RBF neural networks[J]. CIESC Journal, 2012, 63(3):796-799.
|
[5] |
郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析[J]. 物理学报, 2009, 58(7):4485-4492. ZHENG G B, JIN N D. Multiscale entropy and dynamic characteristics of two-phase flow patterns[J]. Physical Review Letters, 2009, 58(7):4485-4492.
|
[6] |
WU H J, ZHOU F D, WU Y Y. Intelligent identification system of flow regime of oil/gas/water[J]. Int. J. Multiphase Flow, 2001, 27:459-475.
|
[7] |
周云龙, 刘旭, 李洪伟. 2种熵测度在分析流型信号复杂度上的应用[J].化学工程, 2011, 39(8):53-56. ZHOU Y L, LIU X, LI H W. Application of two entropy measures to analyzing complexity of multiphase flow signal[J]. Chemical Engineering(China), 2011, 39(8):53-56.
|
[8] |
周云龙, 尹洪梅, 丁会晓. 多尺度熵在棒束通道气液两相流压差信号分析中的应用[J]. 化工学报, 2016, 67(9):3625-3631. ZHOU Y L, YIN H M, DING H X. Application of multi-scale entropy in analyzing pressure difference signals of gas-liquid two-phase flow in rod bundled channel[J]. CIESC Journal, 2016, 67(9):3625-3631.
|
[9] |
李文升, 郭烈锦, 谢晨. 集输立管内气水两相流压差信号的特征分析[J]. 工程热物理学报, 2015, 36(6):1247-1251. LI W S, GUO L J, XIE C. Analysis on the signal features of differential pressure for air-water two-phase flow in pipeline-riser system[J]. Journal of Engineering Thermophysics, 2015, 36(6):1247-1251.
|
[10] |
COSTA M, GOLDBERGER A L, PENG C K. Multiscale entropy analysis of complex physiologic time series[J]. Physical Review Letters, 2002, 89(6):068102.
|
[11] |
RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278(6):H2039-H2049.
|
[12] |
李洪伟, 周云龙, 宋倩, 等. 水平气液两相流流型图像信息递归特征分析[J]. 化工学报, 2010, 61(6):1431-1436. LI H W, ZHOU Y L, SONG Q, et al. Recursive feature of gas-liquid two-phase flow pattern based on information entropy series of flow image[J]. CIESC Journal, 2010, 61(6):1431-1436.
|
[13] |
杨靖, 郭烈锦. 气液两相流压差信号的非线性分析[J]. 中国电机工程学报, 2002, 22(7):134-139. YANG J, GUO L J. A nonlinear analysis on differential pressure drop signal for gas-liquid two-phase flow[J]. Proceedings of the CSEE, 2002, 22(7):134-139.
|
[14] |
段艳杰, 吕宜生, 张杰, 等. 深度学习在控制领域的研究现状与展望[J]. 自动化学报, 2016, 42(5):643-654. DUN Y J, LU Y S, ZHANG J, et al. Deep learning for control:the state of the art and prospects[J]. Acta Automatica Sinica, 2016, 42(5):643-654.
|
[15] |
SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61:85-117.
|
[16] |
HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554.
|
[17] |
王伟凝, 王励, 赵明权, 等. 基于并行深度卷积神经网络的图像美感分类[J]. 自动化学报, 2016, 42(6):904-914. WANG W N, WANG L, ZHAO M Q, et al. Image aesthestic classification using parallel deep convolutional neural networks[J]. Acta Automatica Sinica, 2016, 42(6):904-914.
|
[18] |
MEI S, JI J, HOU J, et al. Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks[J]. IEEE Transactions on Geoscience & Remote Sensing, 2017, 55(8):4520-4533.
|
[19] |
张帅. 基于深度学习的植物叶片识别算法研究[D]. 北京:北京林业大学, 2016. ZHANG S. Research on plant leaf images identification algorithm based on deep learning[D]. Beijing:Beijing Forestry University, 2016.
|
[20] |
AREL I, ROSE D C, KARNOWSKI T P. Deep machine learning a new frontier in artificial intelligence research[J]. IEEE Computational Intelligence Magazine, 2010, 5(4):13-18.
|
[21] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
|
[22] |
孙斌, 王二朋, 郑永军. 气液两相流波动信号的时频谱分析研究[J]. 物理学报, 2011, 60(1):381-388. SUN B, WANG E P, ZHENG Y J. Time-frequency spectral analysis of gas-liquid two-phase flow's fluctuation[J]. Acta Physica Sinica, 2011, 60(1):381-388.
|
[23] |
孙斌, 张宏建, 岳伟挺. HHT与神经网络在油气两相流流型识别中的应用[J]. 化工学报, 2004, 55(10):1723-1727. SUN B, ZHANG H J, YUE W T. Applied study of HHT and neural networks on flow regime identification for oil-gas two-phase flow[J]. Journal of Chemical Engineering and Industry (China), 2004, 55(10):1723-1727.
|
[24] |
王秀芳, 汪清, 李博健. 基于自适应最优核时频分析的管道泄漏检测应用研究[J]. 化工自动化及仪表, 2015, 42(7):770-773+849. WANG X F, WANG Q, LI B J. Research of gas pipeline leak detection based on adaptive optimal kernel time-frequency analysis[J]. Control and Instruments in Chemical Industry, 2015, 42(7):770-773+849
|
[25] |
王晓凯, 高静怀, 何洋洋. 基于时频自适应最优核的时频分析方法[J]. 系统工程与电子技术, 2010, 32(1):22-26. WANG X K, GAO J H, HE Y Y. Time-frequency analysis based on time-frequency-adaptive optional-kernel[J]. Systems Engineering and Electronics, 2010, 32(1):22-26.
|
[26] |
COIFMAN R R, DONOHO D L. Translation-Invariant De-Noising[M]. New York:Springer, 1995:125-150.
|
[27] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
|
[28] |
HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8):2554-2558.
|
[29] |
SUN H Q, PANG Y W. Glance nets-efficient convolutional neural networks with adaptive hard example mining[J]. Science China(Information Sciences), 2018, 61(10):253-255.
|
[30] |
BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1):1-12.
|