[1] |
HAMAMOTO R, ITO H, HIROHARA M, et al. Interactions between protein molecules and the virus removal membrane surface:effects of immunoglobulin G adsorption and conformational changes on filter performance[J]. Biotechnol. Prog., 2017, DOI:10. 1002/btpr. 2586.
|
[2] |
TATIKOLOV A S, AKIMKIN T M, PANOVA I G, et al. Spectral-fluorescent study of the interaction of the polymethine dye probe Cyan 2 with chondroitin-4-sulfate[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 177:93-96.
|
[3] |
邵庆, 陆小华, 吕玲红, 等. 蛋白质分子与固体表面相互作用的分子模拟[J]. 化工学报, 2006, 57(9):2005-2011. SHAO Q, LU X H, LÜ L H, et al. Investigation on interaction of protein molecules and solid surface by molecular simulation[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(9):2005-2011.
|
[4] |
BUXBAUM J N, MORGAN G J. Summary:FASEB science research conference on protein aggregation in health and disease[J]. FASEB J., 2018, 32(3):1125-1129.
|
[5] |
ZHANG L, TRUSHIN S, CHRISTENSEN T A, et al. Differential effect of amyloid beta peptides on mitochondrial axonal trafficking depends on their state of aggregation and binding to the plasma membrane[J]. Neurobiol. Dis., 2018, 114:1-16.
|
[6] |
彭鑫, 张雨薇, 王梦凡, 等. 酶活性部位柔性的分形分析[J]. 化工学报, 2013, 64(2):671-675. PENG X, ZHANG Y W, WANG M F, et al. Fractal analysis of flexibility of enzyme active sites[J]. CIESC Journal, 2013, 64(2):671-675.
|
[7] |
ASOR R, BEN-NUN-SHAUL O, OPPENHEIM A, et al. Crystallization, reentrant melting, and resolubilization of virus nanoparticles[J]. ACS Nano, 2017, 11(10):9814-9824.
|
[8] |
YU D, YGAN H, WANG H, et al. Interactions between colloidal particles in the presence of an ultrahighly charged amphiphilic polyelectrolyte[J]. Langmuir, 2014, 30(48):14512-14521.
|
[9] |
ZHOU J, KE F, LIANG D. Kinetic study on the reentrant condensation of oligonucleotide in trivalent salt solution[J]. J. Phys. Chem. B, 2010, 114(43):13675-13680.
|
[10] |
MANCIU M, RUCKENSTEIN E. Role of the hydration force in the stability of colloids at high ionic strengths[J]. Langmuir, 2001, 17(22):7061-7070.
|
[11] |
HORMENO S, IBARRA B, VALPUESTA J M, et al. Mechanical stability of low-humidity single DNA molecules[J]. Biopolymers, 2012, 97(4):199-208.
|
[12] |
WU H, AROSIO P, PPDOLSKAYA O G, et al. Stability and gelation behavior of bovine serum albumin pre-aggregates in the presence of calcium chloride[J]. Phys. Chem. Chem. Phys., 2012, 14(14):4906-4916.
|
[13] |
MATSARSKAIA O, BRAUN M K, ROOSEN-RUNGE F, et al. Cation-induced hydration effects cause lower critical solution temperature behavior in protein solutions[J]. J. Phys. Chem. B, 2016, 120(31):7731-7736.
|
[14] |
FARAUDO J. The missing link between the hydration force and interfacial water:evidence from computer simulations[J]. Curr. Opin. Colloid In., 2011, 16(6):557-560.
|
[15] |
RAVIKUMAR K M, HWANG W. Role of hydration force in the self-assembly of collagens and amyloid steric zipper filaments[J]. J. Am. Chem. Soc., 2011, 133(30):11766-11773.
|
[16] |
ROOSEN-RUNGE F, HECK B S, ZHANG F, et al. Interplay of pH and binding of multivalent metal ions:charge inversion and reentrant condensation in protein solutions[J]. J. Phys. Chem. B, 2013, 117(18):5777-5787.
|
[17] |
ZHANG F, WEGGLER S, ZILLER M J, et al. Universality of protein reentrant condensation in solution induced by multivalent metal ions[J]. Proteins, 2010, 78(16):3450-3457.
|
[18] |
IANESELLI L, ZHANG F, SKODA W A M, et al. Protein-protein interactions in ovalbumin solutions studied by small-angle scattering:effect of ionic strength and the chemical nature of cations[J]. J. Phys. Chem. B, 2010, 114(11):3776-3783.
|
[19] |
PASQUIRE C, VAZDAR M, FORSMAN J, et al. Anomalous protein-protein interactions in multivalent salt solution[J]. J. Phys. Chem. B, 2017, 121(14):3000-3006.
|
[20] |
MELANDER W, HORVATH C. Salt effects on hydrophobic interactions in precipitation and chromatography of proteins:an interpretation of the lyotropic series[J]. Arch. Biochem. Biophys., 1977, 183(1):200-215.
|
[21] |
KONONENKO V I, SUKHMAN A L, TOROKIN V V. Density and surface tension of liquid rare earth metals, scandium, and yttrium[J]. Phys. Stat. Sol., 1984, 84(2):423-432.
|
[22] |
HSIN W L, SHEN Y J, LIN S Y. Surface tension increment due to solute addition[J]. Phys Rev. E Stat. Nonlin Soft Matter Phys., 2004, 69(3 Pt 1):031605.
|
[23] |
LINDNER P, ZEMB T. Neutrons, X-rays and Light:Scattering Methods Applied to Soft Condensed Matter[M]. New York:Academic Press, 2002:541.
|
[24] |
JONASZ M, FOURNIER G R. Light Scattering by Particles in Water[M]. New York:Academic Press, 2007:145-265.
|
[25] |
LATTUADA M, EHRL L. Scattering properties of dense clusters of colloidal nanoparticles[J]. J. Phys. Chem. B, 2009, 113(17):5938-5950.
|
[26] |
FLOQUET S, BRUN S, LEMONNIER J F, et al. Molecular weights of cyclic and hollow clusters measured by dosy NMR spectroscopy[J]. J. Am. Chem. Soc., 2009, 131(47):17254-17259.
|
[27] |
FANG L, BOWN W, KONAK C. Dynamic light scattering study of the sol-gel transition[J]. Macromolecules, 1991, 24(26):6839-6842.
|
[28] |
WEI D, WU H, XIA Z B, et al. Monitoring coalescence behavior of soft colloidal particles in water by small-angle light scattering[J]. Colloid Polym. Sci., 2012, 290(11):1033-1040.
|
[29] |
BROWN W, JOHANSSON K, ALMGREN M. Threadlike micelles from cetyltrimethylammonium bromide in aqueous sodium naphthalenesulfonate solutions studied by static and dynamic light scattering[J]. J. Phys. Chem., 1989, 93(15):5888-5894.
|
[30] |
LIN M Y, LINDSAY H M, WEITZ D A, et al. Universality in colloid aggregation[J]. Nature, 1989, 339(6223):360-362.
|
[31] |
LIN M Y, LINDSAY H M, WEITZ D A, et al. Universal reaction-limited colloid aggregation[J]. Phys. Rev. A, 1990, 41(4):2005-2020.
|
[32] |
LIN M Y, LINDSAY H M, WEITZ D A, et al. Universal diffusion-limited colloid aggregation[J]. J. Phys. Condens. Matter, 1990, 2(23):3093-3113.
|
[33] |
ISRAELACHVILI J N. Intermolecular and Surface Forces[M]. San Diego:Elsevier Science Publishing Co. Inc., 2011:71-90.
|
[34] |
MEYER R A. Encyclopedia of Physical Science and Technology[M]. New York:Academic Press, 2003:185-207.
|
[35] |
GIGAULT J, GRASSL B. Improving the understanding of fullerene (nC60) aggregate structures:fractal dimension characterization by static light scattering coupled to asymmetrical flow field flow fractionation[J]. J. Colloid Interf. Sci., 2017, 502:193-200.
|
[36] |
MOGHADDAM S T, HADWIN P J, DAUN K J. Soot aggregate sizing through multiangle elastic light scattering:influence of model error[J]. J. Aerosol Sci., 2017, 111:36-50.
|
[37] |
WEIJERS M, VISSCHERS R W, NICOLAI T. Light scattering study of heat-induced aggregation and gelation of ovalbumin[J]. Macromolecules, 2002, 35(12):4753-4762.
|