CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5526-5536.DOI: 10.11949/0438-1157.20221175
• Surface and interface engineering • Previous Articles Next Articles
Zhimin ZHANG1,2(), Xuexing DING1(), Lanxia ZHANG1, Ning LI3, Jiaxin SI3
Received:
2022-08-25
Revised:
2022-10-27
Online:
2023-01-17
Published:
2022-12-05
Contact:
Xuexing DING
张志敏1,2(), 丁雪兴1(), 张兰霞1, 力宁3, 司佳鑫3
通讯作者:
丁雪兴
作者简介:
张志敏(1990—),男,博士研究生,讲师,zhangzhimin0911@163.com
基金资助:
CLC Number:
Zhimin ZHANG, Xuexing DING, Lanxia ZHANG, Ning LI, Jiaxin SI. Fractal wear prediction model and numerical analysis of floating ring seal face[J]. CIESC Journal, 2022, 73(12): 5526-5536.
张志敏, 丁雪兴, 张兰霞, 力宁, 司佳鑫. 浮环密封端面分形磨损预估模型及数值分析[J]. 化工学报, 2022, 73(12): 5526-5536.
Add to citation manager EndNote|Ris|BibTeX
模型参数 | 参数值 |
---|---|
钢销弹性模量E1/ GPa | 116.5 |
摩擦因数f | 0.058 |
特征尺度G/ m | |
钢销屈服应力σy/MPa | 300 |
弹性变形磨损系数Ke1 | |
塑性变形磨损系数Ke3 | |
平均滑移速度v/(m/s) | 0.69 |
法向接触载荷P /MPa | 0.42 |
名义接触面积Aa / m2 |
Table 1 Literature test parameter[29]
模型参数 | 参数值 |
---|---|
钢销弹性模量E1/ GPa | 116.5 |
摩擦因数f | 0.058 |
特征尺度G/ m | |
钢销屈服应力σy/MPa | 300 |
弹性变形磨损系数Ke1 | |
塑性变形磨损系数Ke3 | |
平均滑移速度v/(m/s) | 0.69 |
法向接触载荷P /MPa | 0.42 |
名义接触面积Aa / m2 |
模型参数 | 参数值 |
---|---|
合金钢弹性模量E2/ GPa | 365 |
石墨弹性模量E3/ GPa | 20 |
石墨屈服应力σy/ MPa | 50 |
合金钢泊松比ν1 | 0.24 |
石墨泊松比ν2 | 0.29 |
弹性变形磨损系数Ke1 | |
弹塑性变形磨损系数Ke2 | |
塑性变形磨损系数 Ke3 | |
平均滑移速度 v/(m/s) | 0.176×10-3 |
石墨浮环密封端面内径d1/m | 0.0832 |
石墨浮环密封端面外径d2 | 0.0898 |
石墨浮环端面载荷P /MPa | 0.28 |
Table 2 Floating ring shape parameters, material parameters and working condition parameters[14,30]
模型参数 | 参数值 |
---|---|
合金钢弹性模量E2/ GPa | 365 |
石墨弹性模量E3/ GPa | 20 |
石墨屈服应力σy/ MPa | 50 |
合金钢泊松比ν1 | 0.24 |
石墨泊松比ν2 | 0.29 |
弹性变形磨损系数Ke1 | |
弹塑性变形磨损系数Ke2 | |
塑性变形磨损系数 Ke3 | |
平均滑移速度 v/(m/s) | 0.176×10-3 |
石墨浮环密封端面内径d1/m | 0.0832 |
石墨浮环密封端面外径d2 | 0.0898 |
石墨浮环端面载荷P /MPa | 0.28 |
D | G/m | nec | nepc | npc |
---|---|---|---|---|
1.5 | 20 | 25 | 32 | |
1.6 | 25 | 29 | 35 | |
1.7 | 29 | 32 | 37 |
Table 3 The critical frequency index of asperities
D | G/m | nec | nepc | npc |
---|---|---|---|---|
1.5 | 20 | 25 | 32 | |
1.6 | 25 | 29 | 35 | |
1.7 | 29 | 32 | 37 |
1 | 胡广阳. 航空发动机密封技术应用研究[J]. 航空发动机, 2012, 38(3): 1-4. |
Hu G Y. Application research of seal technologies for aeroengine[J]. Aeroengine, 2012, 38(3): 1-4. | |
2 | 苏呈龙, 陈美军, 黄俊. 某型航空发动机石墨密封环应用与失效分析[J]. 成都航空职业技术学院学报, 2021, 37(2): 60-62, 88. |
Su C L, Chen M J, Huang J. Application and failure analysis of graphite seal ring on an aero engine[J]. Journal of Chengdu Aeronautic Polytechnic, 2021, 37(2): 60-62, 88. | |
3 | 陈涛, 刘美红. 柱面气膜密封研究进展及发展趋势[J]. 新技术新工艺, 2014(6): 78-81. |
Chen T, Liu M H. Research progress and development trend of cylindrical gas film seal[J]. New Technology & New Process, 2014(6): 78-81. | |
4 | 郑娆, 陈潇竹, 李双喜, 等. 高速气膜镶装式浮环密封的开启特性[J]. 北京航空航天大学学报, 2022(11): 2111-2120. |
Zheng R, Chen X Z, Li S X, et al. Study on opening characteristics of high speed gas film inlaid floating ring seal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022(11): 2111-2120. | |
5 | 何强, 黄伟峰, 胡广阳, 等. 航空发动机气膜密封技术的发展[J]. 航空发动机, 2021, 47(4):106-113. |
He Q, Huang W F, Hu G Y, et al. Research status of the film-riding gas seal technologies in aeroengine[J]. Aeroengine, 2021, 47(4): 106-113. | |
6 | 力宁, 江平, 翁泽文, 等. 航空发动机浮环密封上浮性能试验研究[J]. 润滑与密封, 2020, 45(11): 143-148. |
Li N, Jiang P, Weng Z W, et al. Experimental study on floating performance of floating ring seals used in aero engine[J]. Lubrication Engineering, 2020, 45(11): 143-148. | |
7 | 马也, 王庆锋, 施任杰, 等. 航空发动机气膜浮环密封上浮性能研究[J]. 润滑与密封, 2021, 46(1): 38-44, 50. |
Ma Y, Wang Q F, Shi R J, et al. Research on floating performance of aeroengine air film floating ring seal[J]. Lubrication Engineering, 2021, 46(1): 38-44, 50. | |
8 | 俞树荣, 丁俊华, 王世鹏, 等. 柱面密封气膜动压效应模拟及试验[J]. 化工学报, 2020, 71(7): 3220-3228. |
Yu S R, Ding J H, Wang S P, et al. Simulation and analysis of dynamic pressure effect of gas film on cylinder seal[J]. CIESC Journal, 2020, 71(7): 3220-3228. | |
9 | 陆俊杰, 张炜, 马浩. 基于F-K滑移流模型的柱面微槽气浮密封浮升能力分析[J]. 化工学报, 2021, 72(8): 4267-4278. |
Lu J J, Zhang W, Ma H. Floating performance of cylindrical microgroove gas floating seal based on F-K slip flow model[J]. CIESC Journal, 2021, 72(8): 4267-4278. | |
10 | 丁雪兴, 贺振泓, 张伟政, 等. 柱面螺旋槽气膜密封微尺度流动场稳态特性分析[J]. 化工学报, 2018, 69(4): 1537-1546. |
Ding X X, He Z H, Zhang W Z, et al. Parameters analysis of steady micro-scale flow of cylindrical spiral groove dry gas seal[J]. CIESC Journal, 2018, 69(4): 1537-1546. | |
11 | Zhou G Y, Leu M C, Blackmore D. Fractal geometry model for wear prediction[J]. Wear, 1993, 170(1): 1-14. |
12 | Ge S R, Chen G A. Fractal prediction models of sliding wear during the running-in process[J]. Wear, 1999, 231(2): 249-255. |
13 | 房桂芳, 滕文锐, 刘其和, 等. 机械密封端面黏着磨损分形模型[J]. 流体机械, 2013, 41(1): 35-40. |
Fang G F, Teng W R, Liu Q H, et al. Adhesive wear fractal model for end face of mechanical seals[J]. Fluid Machinery, 2013, 41(1): 35-40. | |
14 | 魏龙, 顾伯勤, 张鹏高. 接触式机械密封端面磨损预测[J]. 南京工业大学学报(自然科学版), 2012, 34(4): 16-21. |
Wei L, Gu B Q, Zhang P G. Wear prediction for end face of contact mechanical seals[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2012, 34(4): 16-21. | |
15 | 魏龙, 顾伯勤, 张鹏高, 等. 机械密封磨合过程端面接触特性[J]. 化工学报, 2012, 63(10): 3202-3207. |
Wei L, Gu B Q, Zhang P G, et al. Contact characterizations of end faces in mechanical seals running-in[J]. CIESC Journal, 2012, 63(10): 3202-3207. | |
16 | Kim Y W, Kim J H, Seo B H, et al. Mathematical model to evaluate wear rate of graphite as sealing materials[J]. Advanced Materials Research, 2013, 871: 200-205. |
17 | 李小彭, 杨泽敏, 潘五九, 等. 接触式机械密封端面的分形磨损模型[J]. 振动·测试与诊断, 2020, 40(5): 841-846, 1017. |
Li X P, Yang Z M, Pan W J, et al. Fractal wear model of contact mechanical seal[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(5): 841-846, 1017. | |
18 | 惠玉祥, 刘莹, 王悦昶, 等. 考虑磨损的接触式端面密封模型及试验[J]. 摩擦学学报, 2021, 41(3): 316-324. |
Hui Y X, Liu Y, Wang Y C, et al. Contact end face seals considering wear: modelling and experiments[J]. Tribology, 2021, 41(3): 316-324. | |
19 | Majumdar A, Tien C L. Fractal characterization and simulation of rough surfaces[J]. Wear, 1990, 136(2): 313-327. |
20 | Yuan Y, Cheng Y, Liu K, et al. A revised Majumdar and Bushan model of elastoplastic contact between rough surfaces[J]. Applied Surface Science, 2017, 425: 1138-1157. |
21 | Kogut L, Etsion I. Elastic-plastic contact analysis of a sphere and a rigid flat[J]. Journal of Applied Mechanics, 2002, 69(5): 657-662. |
22 | Wang S, Komvopoulos K. Closure to “discussion of ‘A fractal theory of the interfacial temperature distribution in the slow sliding regime(part Ⅰ): Elastic contact and heat transfer analysis’” (1994, ASME J. Tribol., 116, p. 822)[J]. Journal of Tribology, 1994, 116(4): 822-823. |
23 | Wang S, Komvopoulos K. A fractal theory of the interfacial temperature distribution in the slow sliding regime(part Ⅱ): Multiple domains, elastoplastic contacts and applications[J]. Journal of Tribology, 1994, 116(4): 824-832. |
24 | Whitehouse D J. Surface topography and quality and its relevance to wear[J]. Fundamentals of Tribology, 1980: 17-50. |
25 | 温诗铸, 黄平. 摩擦学原理[M]. 北京: 清华大学出版社, 2012. |
Wen S Z, Huang P. Principles of Tribology[M]. Beijing: Tsinghua University Press, 2012. | |
26 | 王松年, 苏诒福. 摩擦学原理及应用[M]. 北京: 中国铁道出版社, 1990: 95-96, 103-106. |
Wang S N, Su Y F. Tribology Principle Application[M]. Beijing: China Railway Publishing House, 1990: 95-96, 103-106. | |
27 | Halling J. Principles of Tribology[M]. London: Macmillan Education UK, 1978: 81-83. |
28 | Archard J F. Wear theory and mechanisms[J]. Wear Control Handbook, 1980, 58: 35-80. |
29 | 葛世荣, 朱华. 摩擦学的分形[M]. 北京: 机械工业出版社, 2005: 260-261. |
Ge S R, Zhu H. Friction and Wear of the Fractal[M]. Beijing: China Machine Press, 2005: 260-261. | |
30 | 孙见君. 机械密封泄漏预测理论及其应用[M]. 北京:中国电力出版社, 2011: 93-103. |
Sun J J. Prediction Theory and Its Application of Mechanical Seal Leakage[M]. Beijing: China Electric Power Press, 2011: 93-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||