CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 107-115.DOI: 10.11949/j.issn.0438-1157.20180307
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Weifeng DENG(),Zhenhua JIANG,Shaoshuai LIU,Ankuo ZHANG,Yinong WU()
Received:
2018-03-22
Revised:
2018-10-08
Online:
2019-01-05
Published:
2019-01-05
Contact:
Yinong WU
通讯作者:
吴亦农
作者简介:
邓伟峰(1987—),男,博士,助理研究员,<email>dwf@mail.sitp.ac.cn</email>|吴亦农(1968—),男,研究员,<email>wyn@mail.sitp.ac.cn</email>
基金资助:
CLC Number:
Weifeng DENG, Zhenhua JIANG, Shaoshuai LIU, Ankuo ZHANG, Yinong WU. Optimization design and experimental properties of high-temperature and high-capacity pulse tube cooler[J]. CIESC Journal, 2019, 70(1): 107-115.
邓伟峰, 蒋珍华, 刘少帅, 张安阔, 吴亦农. 高温区大冷量脉管制冷机优化设计与实验特性[J]. 化工学报, 2019, 70(1): 107-115.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180307
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
蓄冷器长度 | 47 mm | 惯性管Ⅰ | ?3×0.8 mm |
蓄冷器内径 | 13.5 mm | 惯性管Ⅱ | ? 4.5×0.8 mm |
蓄冷器外径 | 26 mm | 气库容积 | 250 ml |
脉管长度 | 63 mm | 活塞直径 | 26 mm |
脉管内径 | 13 mm | 活塞冲程 | ±6 mm |
Table 1 Main structural parameters of pulse tube cold finger
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
蓄冷器长度 | 47 mm | 惯性管Ⅰ | ?3×0.8 mm |
蓄冷器内径 | 13.5 mm | 惯性管Ⅱ | ? 4.5×0.8 mm |
蓄冷器外径 | 26 mm | 气库容积 | 250 ml |
脉管长度 | 63 mm | 活塞直径 | 26 mm |
脉管内径 | 13 mm | 活塞冲程 | ±6 mm |
1 | DavisT, TomlinsonbJ, LedbetterJ. Military space cryogenic cooling requirements for the 21st century[C]// Proceedings of 11th International Cryocooler Conference. California, America, 2001: 1-9. |
2 | RossR G. Aerospace coolers: 50-year quest for long-life cryogenic cooling in space[M]// Timmerhaus K D, Reed R P. Cryogenic Engineering: Fifty Years of Progress. New York: Springer, 2007: 225-284. |
3 | GroepW L, MullieJ C, WillemsW J, et al. Development of a 15 W coaxial pulse tube cooler[C]// Proceedings of 15th International Cryocooler Conference. California, America, 2009: 157-165. |
4 | RadebaughR. Thermodynamics of regenerative refrigerator[J]. Generation of Low Temperature and its Applications, 2003, (5): 1-20. |
5 | 戴巍. 热声制冷技术的研究前沿及进展[J]. 化工学报, 2008, 59(S2): 14-22. |
DaiW. Advances in thermoacoustic refrigeration[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(S2): 14-22. | |
6 | ZhuS W, WuP Y, ChenZ Q. Double inlet pulse tube refrigerators: an important improvement[J]. Cryogenics, 1990, 30(6): 514-520. |
7 | van der WaltN R, ReuvenU. Linear electrodynamic machine: US 5389844[P]. 1995-09-21. |
8 | ZhuS W, MatsubaraY. A numerical method of regenerator[J]. Cryogenics, 2004, 44(2): 131-140. |
9 | GaryJ, O’GallagherA, RadebaughR, et al. REGEN 3.3:User Manual[M]. National Institute of Standards and Technology, 2008. |
10 | RadebaughR, ZimmermanJ, SmithD R, et al. A comparison of three types pulse tube refrigerators: new methods for reaching 60K[C]// Kittel P. Advanced in Cryogenic Engineering. Vol.31. Proceedings of the Cryogenic Engineering Conference. New York, America, 1986: 779-789. |
11 | RoachP R, KashaniA. Pulse tube coolers with an inertance tube: theory, modeling and practice[C]// Kittel P. Advanced in Cryogenic Engineering. Vol.43. Proceedings of the Cryogenic Engineering Conference. New York, America, 1998: 1895-1902. |
12 | GedeonD. Sage User s Guide[M]. Gedeon Associates, 2009. |
13 |
ClarkJ P, WardW C, SwiftG W. Design environment for low-amplitude thermoacoustic energy conversion[J]. The Journal of the Acoustical Society of America, 2007, 122(5). DOI: 10.1121/1.2942768.
DOI |
14 | DurandD, NguyenT, TwardE. High efficiency cryocooler performance[C]// Proceedings of the Cryogenic Engineering Conference. New York, 2014: 97-104. |
15 | WiertzT, UrbanoJ. Qualification of a European large pulse tube cooler system for space applications[C]// Proceedings of 19th International Cryocooler Conference. California, America, 2016: 17-154. |
16 | 黄宇, 胡剑英, 戴巍, 等.高效同轴脉冲管制冷机性能的实验研究[J].工程热物理学报, 2011, 32(2): 189-192. |
HuangY, HuJ Y, DaiW, et al. Experimental study of a high efficiency coaxial pulse tube cryocooler[J]. Journal of Engineering Thermophysics, 2011, 32(2): 189-192. | |
17 | ArtsR, MullieJ, TanchonT, et al. LPT6510 Pulse tube cooler for 60—150 K applications[C]// Proceedings of 19th International Cryocooler Conference. California, America, 2016: 155-159. |
18 | ChassaingC, ButterworthJ, AigouyG, et al. 150 K—200 K Pulse tube cooler for micro satellites[C]// Proceedings of 18th International Cryocooler Conference. New York, America, 2014: 79-86. |
19 | MaiM, RosenhagenC, RuehlichI. Development of single piston moving magnet cryocooler SX020[C]// Proceedings of 18th International Cryocooler Conference. New York, 2014: 65-71. |
20 | ZhangA K, WuY N, LiuS S, et al. Experiment study of a coaxial pulse tube cryocooler[C]//Proceedings of 18th International Cryocooler Conference. New York, America, 2014: 151-154. |
21 | LiuS S, ChenX, ZhangA K, et al. Investigation on phase shifter of a 10 W/70 K inertance pulse tube refrigerator[J]. International Journal of Refrigeration, 2017, 74: 448-455. |
22 | 刘少帅, 张华, 张安阔, 等. 80 K脉管制冷机惯性管调相机理及优化研究[J]. 制冷学报, 2016, 37(5): 100-105. |
LiuS S, ZhangH, ZhangA K, et al. Theory and optimization study of inertance tube of 80 K pulse tube refrigerator[J]. Journal of Refrigeration, 2016, 37(5): 100-105. | |
23 | ZhangA K, ChenX, WuY N, et al. Study on a 10 W/90 K in-line pulse tube cryocooler[J]. Cryogenics, 2012, 52: 800-804. |
24 | KiT, JeongS. Optimal design of the pulse tube refrigerator with slit-type heat exchangers[J]. Cryogenics, 2010, 50: 608-614. |
25 | KiT, JeongS. Stirling-type pulse tube refrigerator with slit-type heat exchangers for HTS superconducting motor[J]. Cryogenics, 2011, 51(6): 341-346. |
26 | 刘少帅, 张安阔, 陈曦, 等. 惯性管盘绕方式对脉管制冷机性能的影响[J]. 化工学报, 2016, 67(5): 1791-1797. |
LiuS S, ZhangA K, ChenX, et al. Effect of coiling ways of inertance tube on performance of pulse tube cryocooler[J]. CIESC Journal, 2016, 67(5): 1791-1797. | |
27 | TominagaA. Thermoacoustic theory and its applications to refrigerators[C]// Proceedings of Third Japanese-Sino Joint Seminar on Small Refrigerators and Related Topics. Okayama, Japan:1989: 141-146. |
28 | SwiftG. Thermoacoustic engines[J]. Journal of the Acoustical Society of America, 1988, 84(4): 1145-1180. |
29 | SwiftG. Thermoacoustics: a unifying perspective for some engines and refrigerators[J]. Journal of the Acoustical Society of America, 2003, 113: 96-105. |
30 | WakelandR S. Use of electrodynamic drivers in thermoacoustic refrigerators[J]. Journal of the Acoustical Society of America, 2000, 107(2): 827-832. |
31 | GanZ H, WangL Y, ZhaoS Y, et al. Acoustic impedance characteristics of linear compressors[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2013, 14(7): 494-503. |
32 | RossR G, JohnsonD L, MonG, et al. Cryocooler resonance characterization[J]. Cryogenics. 1994, 34(5): 435-442. |
[1] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[2] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[3] | Yue HU, Shoujun MA, Xigao JIAN, Zhihuan WENG. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile) [J]. CIESC Journal, 2023, 74(2): 871-882. |
[4] | Yafu LI, Liangliang FU, Haolong BAI, Dingrong BAI, Guangwen XU. The simultaneous synthesis of high-quality forsterite and sintered magnesia from magnesite flotation tailings [J]. CIESC Journal, 2022, 73(8): 3679-3687. |
[5] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
[6] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[7] | Qiwang HOU, Zhaolun WEN, Zhonglin ZHANG, Yegang LIU, Jingxuan YANG, Dongliang CHEN, Xiaogang HAO, Guoqing GUAN. Design and evaluation of a coal-based polygeneration system with carbon cycle [J]. CIESC Journal, 2022, 73(5): 2073-2082. |
[8] | Wenxin MEN, Qingshou PENG, Xia GUI. Phase equilibrium of CO2 hydrate in the presence of four different quaternary ammonium salts [J]. CIESC Journal, 2022, 73(4): 1472-1482. |
[9] | Huan GAO, Guoliang DING, Faxian ZHOU, Dawei ZHUANG. Research on dynamic separation characteristics of R410A refrigerant with lubricant [J]. CIESC Journal, 2022, 73(3): 1054-1062. |
[10] | ZOU Huiming, WANG Yinglin, LI Xuan, TANG Mingsheng, TIAN Changqing. R290 linear compressor under variable conditions [J]. CIESC Journal, 2021, 72(S1): 342-347. |
[11] | LI Dan, SUN Shuaiqi, ZHANG Tao, ZHAO Yihui, MENG Lingzong, GUO Yafei, DENG Tianlong. Pitzer thermodynamic model of the system HCl-NaCl-CaCl2-H3BO3-H2O at 298.15 K and its application [J]. CIESC Journal, 2021, 72(6): 3160-3169. |
[12] | XIONG Yaxuan, QIAN Xiangyao, LI Shuo, SUN Mingyuan, WANG Zhenyu, WU Yuting, XU Peng, DING Yulong, MA Chongfang. Effect of preparation methods on thermal energy storage performance and formation mechanism of molten salt nanofluids [J]. CIESC Journal, 2021, 72(5): 2857-2868. |
[13] | LI Mengyang, GAO Ming, ZUO Qirong, ZHANG Lixin, ZHAO Yugang. Visualization investigation of TBAB hydrate formation in droplets on supercooled wall surfaces [J]. CIESC Journal, 2021, 72(4): 2094-2101. |
[14] | SHI Shanshan, WEI Aibo, ZHANG Xiaobin. CFD simulation and experimental research on ultrasonic cavitation of liquid nitrogen [J]. CIESC Journal, 2021, 72(4): 1930-1938. |
[15] | CHEN Boya, LI Mingyan, ZHU Yuhang, PENG Changjun, LIU Honglai. Calculating adsorption isotherm of gas mixture at solid interface using molecular thermodynamic model of two-dimensional fluid [J]. CIESC Journal, 2021, 72(2): 913-920. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||