CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2857-2868.DOI: 10.11949/0438-1157.20201406
• Material science and engineering, nanotechnology • Previous Articles Next Articles
XIONG Yaxuan1(),QIAN Xiangyao1,LI Shuo1,SUN Mingyuan1,WANG Zhenyu1,WU Yuting2,XU Peng1,DING Yulong3,MA Chongfang2
Received:
2020-10-09
Revised:
2021-01-08
Online:
2021-05-05
Published:
2021-05-05
Contact:
XIONG Yaxuan
熊亚选1(),钱向瑶1,李烁1,孙明远1,王振宇1,吴玉庭2,徐鹏1,丁玉龙3,马重芳2
通讯作者:
熊亚选
作者简介:
熊亚选(1977—),男,博士,副教授,基金资助:
CLC Number:
XIONG Yaxuan, QIAN Xiangyao, LI Shuo, SUN Mingyuan, WANG Zhenyu, WU Yuting, XU Peng, DING Yulong, MA Chongfang. Effect of preparation methods on thermal energy storage performance and formation mechanism of molten salt nanofluids[J]. CIESC Journal, 2021, 72(5): 2857-2868.
熊亚选, 钱向瑶, 李烁, 孙明远, 王振宇, 吴玉庭, 徐鹏, 丁玉龙, 马重芳. 制备方法对纳米熔盐储热性能及形成机理的影响[J]. 化工学报, 2021, 72(5): 2857-2868.
Add to citation manager EndNote|Ris|BibTeX
材料 | 纯度/% | 生产商 | 粒径/nm | 单价/(CNY/t) |
---|---|---|---|---|
NaNO3 | ≥ 99 | Sinopharm Chemical Reagent Co., Ltd., China | — | 3500 |
KNO3 | ≥ 99 | Sinopharm Chemical Reagent Co., Ltd., China | — | 5200 |
SiO2 | ≥ 99.8 | Shen Zhen Nanolly Chemical Reagent Co., Ltd., China | 20 | 25000 |
Table 1 Basic characteristics of component salts and nanoparticles
材料 | 纯度/% | 生产商 | 粒径/nm | 单价/(CNY/t) |
---|---|---|---|---|
NaNO3 | ≥ 99 | Sinopharm Chemical Reagent Co., Ltd., China | — | 3500 |
KNO3 | ≥ 99 | Sinopharm Chemical Reagent Co., Ltd., China | — | 5200 |
SiO2 | ≥ 99.8 | Shen Zhen Nanolly Chemical Reagent Co., Ltd., China | 20 | 25000 |
材料 | 水溶液法 | 高温熔融法 | ||||||
---|---|---|---|---|---|---|---|---|
熔化潜热/(J/g) | 升高/% | 熔点/℃ | 升高/℃ | 熔化潜热/(J/g) | 升高/% | 熔点/℃ | 升高/℃ | |
base salt | 113.6 | 0.00 | 217.6 | 0 | 113.6 | 0.00 | 217.6 | 0 |
+1% SiO2 30 min | 111.9 | -1.52 | 210.4 | -7.2 | 118.3 | 3.97 | 210.7 | -6.9 |
+1% SiO2 45 min | 112.3 | -1.16 | 210.8 | -6.8 | 118.4 | 4.05 | 210.6 | -7 |
+1% SiO2 60 min | 114.7 | 0.96 | 210.3 | -7.3 | 120.1 | 5.41 | 209.7 | -7.9 |
+1% SiO2 75 min | 116.6 | 2.57 | 209.6 | -8 | 118.6 | 4.22 | 210.2 | -7.4 |
+1% SiO2 90 min | 117.6 | 3.40 | 210.7 | -6.9 | 120.6 | 5.80 | 210.5 | -7.1 |
+1% SiO2 105 min | 118.5 | 4.14 | 210.2 | -7.4 | 118.4 | 4.05 | 210.3 | -7.3 |
+1% SiO2 120 min | 115.5 | 1.65 | 209.6 | -8 | 116.6 | 2.57 | 210.3 | -7.3 |
+1% SiO2 135 min | 119.4 | 4.86 | 209.3 | -8.3 | 118.3 | 3.97 | 210.3 | -7.3 |
+1% SiO2 150 min | 117.3 | 3.15 | 209.6 | -8 | 117.4 | 3.24 | 210.1 | -7.5 |
+1% SiO2 165 min | 114.9 | 1.13 | 209.3 | -8.3 | 116.9 | 2.82 | 210.5 | -7.1 |
Table 2 Melting point and latent heat of molten salt nanofluids
材料 | 水溶液法 | 高温熔融法 | ||||||
---|---|---|---|---|---|---|---|---|
熔化潜热/(J/g) | 升高/% | 熔点/℃ | 升高/℃ | 熔化潜热/(J/g) | 升高/% | 熔点/℃ | 升高/℃ | |
base salt | 113.6 | 0.00 | 217.6 | 0 | 113.6 | 0.00 | 217.6 | 0 |
+1% SiO2 30 min | 111.9 | -1.52 | 210.4 | -7.2 | 118.3 | 3.97 | 210.7 | -6.9 |
+1% SiO2 45 min | 112.3 | -1.16 | 210.8 | -6.8 | 118.4 | 4.05 | 210.6 | -7 |
+1% SiO2 60 min | 114.7 | 0.96 | 210.3 | -7.3 | 120.1 | 5.41 | 209.7 | -7.9 |
+1% SiO2 75 min | 116.6 | 2.57 | 209.6 | -8 | 118.6 | 4.22 | 210.2 | -7.4 |
+1% SiO2 90 min | 117.6 | 3.40 | 210.7 | -6.9 | 120.6 | 5.80 | 210.5 | -7.1 |
+1% SiO2 105 min | 118.5 | 4.14 | 210.2 | -7.4 | 118.4 | 4.05 | 210.3 | -7.3 |
+1% SiO2 120 min | 115.5 | 1.65 | 209.6 | -8 | 116.6 | 2.57 | 210.3 | -7.3 |
+1% SiO2 135 min | 119.4 | 4.86 | 209.3 | -8.3 | 118.3 | 3.97 | 210.3 | -7.3 |
+1% SiO2 150 min | 117.3 | 3.15 | 209.6 | -8 | 117.4 | 3.24 | 210.1 | -7.5 |
+1% SiO2 165 min | 114.9 | 1.13 | 209.3 | -8.3 | 116.9 | 2.82 | 210.5 | -7.1 |
1 | Alva G, Lin Y X, Fang G Y. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378. |
2 | Xuan Y M, Roetzel W. Conceptions for heat transfer correlation of nanofluids[J]. International Journal of Heat and Mass Transfer, 2000, 43(19): 3701-3707. |
3 | Shin D. Molten salt nanomaterials for thermal energy storage and concentrated solar power applications[D]. Texas: Texas A & M University, 2011. |
4 | Chieruzzi M, Cerritelli G F, Miliozzi A, et al. Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature[J]. Solar Energy Materials and Solar Cells, 2017, 167: 60-69. |
5 | Hu Y W, He Y R, Zhang Z D, et al. Effect of Al2O3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications[J]. Energy Conversion and Management, 2017, 142: 366-373. |
6 | Jo B, Banerjee D. Enhanced specific heat capacity of molten salt-based carbon nanotubes nanomaterials[J]. Journal of Heat Transfer, 2015, 137(9): 091013-091017. |
7 | Sang L X, Liu T. The enhanced specific heat capacity of ternary carbonates nanofluids with different nanoparticles[J]. Solar Energy Materials and Solar Cells, 2017, 169: 297-303. |
8 | Tian H Q, Du L C, Wei X L, et al. Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage[J]. Applied Energy, 2017, 204: 525-530. |
9 | Singh R P, Kaushik S C, Rakshit D. Solidification behavior of binary eutectic phase change material in a vertical finned thermal storage system dispersed with graphene nano-plates[J]. Energy Conversion and Management, 2018, 171: 825-838. |
10 | Chieruzzi M, Cerritelli G F, Miliozzi A, et al. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage[J]. Nanoscale Res Lett, 2013, 8(1): 448. |
11 | Shin D, Banerjee D. Effects of silica nanoparticles on enhancing the specific heat capacity of carbonate salt eutectic [J]. International Journal of Structural Changes in Solids, 2010, 2(2): 25-31. |
12 | Zhang L D, Chen X, Wu Y T, et al. Effect of nanoparticle dispersion on enhancing the specific heat capacity of quaternary nitrate for solar thermal energy storage application[J]. Solar Energy Materials and Solar Cells, 2016, 157: 808-813. |
13 | Kim H, Jo B. Anomalous increase in specific heat of binary molten salt-based graphite nanofluids for thermal energy storage[J]. Applied Sciences, 2018, 8(8): 1305. |
14 | Xiong Y X, Wang Z Y, Wu Y T, et al. Performance enhancement of bromide salt by nano-particle dispersion for high-temperature heat pipes in concentrated solar power plants[J]. Applied Energy, 2019, 237: 171-179. |
15 | Schuller M, Little F, Malik D, et al. Molten salt-carbon nanotube thermal energy storage for concentrating solar power systems final report[R]. Office of Scientific and Technical Information (OSTI), 2012. |
16 | Lasfargues M. Nitrate based high temperature nano-heat-transfer-fluids: formulation & characterisation[D]. Leeds: The University of Leeds, 2014. |
17 | Luo Y, Du X Z, Awad A, et al. Thermal energy storage enhancement of a binary molten salt viain situ produced nanoparticles[J]. International Journal of Heat and Mass Transfer, 2017, 104: 658-664. |
18 | Awad A, Burns A, Waleed M, et al. Latent and sensible energy storage enhancement of nano-nitrate molten salt[J]. Solar Energy, 2018, 172: 191-197. |
19 | Song W L, Lu Y W, Wu Y T, et al. Effect of SiO2 nanoparticles on specific heat capacity of low-melting-point eutectic quaternary nitrate salt[J]. Solar Energy Materials and Solar Cells, 2018, 179: 66-71. |
20 | 张璐迪, 吴玉庭, 任楠, 等. 纳米粒子的分散对提高LMPS盐比热容的影响[J]. 太阳能学报, 2017, 38(11): 3018-3021. |
Zhang L D, Wu Y T, Ren N, et al. Effects of nanoparticle dispersion on enhancing specific heat capacity of lmps salt[J]. Acta Energiae Solaris Sinica, 2017, 38(11): 3018-3021. | |
21 | 熊亚选, 王振宇, 徐鹏, 等. 添加纳米SiO2对单组分及二元硝酸盐热物性的影响[J]. 化工学报, 2018, 69(10): 4418-4426. |
Xiong Y X, Wang Z Y, Xu P, et al. Eenhancing thermal properties of mono and binary nitrates by adding SiO2 nanoparticles[J]. CIESC Journal, 2018, 69(10): 4418-4426. | |
22 | Oh S H, Kauffmann Y, Scheu C, et al. Ordered liquid aluminum at the interface with sapphire[J]. Science, 2005, 310(5748): 661-663. |
23 | Thoms M W. Adsorption at the nanoparticle interface for increased thermal capacity in solar thermal systems[D]. Cambridge Massachusetts: MIT, 2012. |
24 | Keblinski P, Phillpot S R, Choi S U S, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)[J]. International Journal of Heat and Mass Transfer, 2002, 45(4): 855-863. |
25 | Xue L, Keblinski P, Phillpot S R, et al. Two regimes of thermal resistance at a liquid–solid interface[J]. The Journal of Chemical Physics, 2003, 118(1): 337-339. |
26 | Xue L, Keblinski P, Phillpot S R, et al. Effect of liquid layering at the liquid-solid interface on thermal transport[J]. International Journal of Heat and Mass Transfer, 2004, 47(19/20): 4277-4284. |
27 | Rizvi S M M, Shin D. Mechanism of heat capacity enhancement in molten salt nanofluids[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120260. |
28 | Shin D, Banerjee D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat and Mass Transfer, 2011, 54(5/6): 1064-1070. |
29 | Wang W, Wu Z, Li B X, et al. A review on molten-salt-based and ionic-liquid-based nanofluids for medium-to-high temperature heat transfer[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(3): 1037-1051. |
30 | Muñoz-Sánchez B, Nieto-Maestre J, Iparraguirre-Torres I, et al. Molten salt-based nanofluids as efficient heat transfer and storage materials at high temperatures. An overview of the literature[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3924-3945. |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Chaoyu SONG, Yaxuan XIONG, Jinhua ZHANG, Yuhe JIN, Chenhua YAO, Huixiang WANG, Yulong DING. Preparation and performance study of incinerated slag based shape-stable phase change composites [J]. CIESC Journal, 2022, 73(5): 2279-2287. |
[3] | Hao ZHANG, Jiao WANG, Ting MA, Xinyi LI, Jun LIU, Qiuwang WANG. Experimental investigation on phase change heat transfer of paraffin composited with porous graphite under supergravity [J]. CIESC Journal, 2021, 72(9): 4523-4530. |
[4] | Lingshuai BU, Zhiguo QU, Hongtao XU, Man JIN. Experimental study of cooling discharging characteristics of the energy storage system filled with MPCM slurry [J]. CIESC Journal, 2021, 72(8): 4064-4072. |
[5] | Rui HUANG, Xiaoming FANG, Ziye LING, Zhengguo ZHANG. Preparation of high-performance sodium acetate trihydrate-urea-expanded graphite mixed phase change material and its application performance in electric floor heating [J]. CIESC Journal, 2020, 71(6): 2713-2723. |
[6] | Yang XU, Zhangjing ZHENG, Mingjia LI. Performance prediction of shell-and-tube latent heat thermal energy storage unit [J]. CIESC Journal, 2019, 70(S2): 237-243. |
[7] | Shaofei WU, Ting YAN, Zihan KUAI, Weiguo PAN. Preparation and thermal energy storage properties of high heat conduction expanded graphite/palmitic acid form-stable phase change materials [J]. CIESC Journal, 2019, 70(9): 3553-3564. |
[8] | Zeshi GAO, Yuanpeng YAO, Huiying WU. Experiment on the unconstrained melting of paraffin in spherical containers [J]. CIESC Journal, 2019, 70(7): 2480-2487. |
[9] | Huiru WANG, Zhenyu LIU, Yuanpeng YAO, Huiying WU. Visualized experiment on solid-liquid phase change heat transfer enhancement with multiple PCMs [J]. CIESC Journal, 2019, 70(4): 1263-1271. |
[10] | WU Dongling, LI Tingxian, HE Feng, WANG Ruzhu. Preparation and performance of modified sodium acetate trihydrate composite phase change material for thermal energy storage [J]. CIESC Journal, 2018, 69(7): 2860-2868. |
[11] | FANG Yutang, XIE Hongzhou, LIANG Xianghui, YU Huimin, GAO Xuenong, ZHANG Zhengguo. Characterization of polystyrene-silica@ n-tetradecane composite nano-encapsulated phase change material and its emulsion performance [J]. CIESC Journal, 2015, 66(2): 800-805. |
[12] | ZHANG Xiaoling, SHI Wenxing, WANG Baolong, LI Xianting. Performance analysis of pressurized absorption thermal storage equipment [J]. CIESC Journal, 2014, 65(6): 2241-2248. |
[13] | YANG Yongping, HAN Jingxiao, LI Peiwen, HOU Hongjuan, XU Ben. Thermal energy storage characteristics of sand as filler material for solar thermocline tank [J]. CIESC Journal, 2014, 65(11): 4285-4292. |
[14] | YANG Bo,LI Xun,ZHAO Jun. Research progress of mobilized thermal energy storage technology [J]. Chemical Industry and Engineering Progree, 2013, 32(03): 515-520. |
[15] | ZHANG Peng, XIAO Xin, WANG Ruzhu, LI Ming. Heat transfer characteristics of shell-tube latent thermal energy storage system [J]. CIESC Journal, 2012, 63(S2): 14-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||