[1] |
QIN M, BELARBI R, AIT-MOKHTAR A, et al. Coupled heat and moisture transfer in multi-layer building materials[J]. Construction & Building Materials, 2009, 23(2):967-975.
|
[2] |
GAUR R C, BANSAL N K. Effect of moisture transfer across building components on room temperature[J]. Building & Environment, 2002, 37(1):11-17.
|
[3] |
OLUTIMAYIN S O, SIMONSON C J. Measuring and modeling vapor boundary layer growth during transient diffusion heat and moisture transfer in cellulose insulation[J]. International Journal of Heat & Mass Transfer, 2005, 48(16):3319-3330.
|
[4] |
CHANG W J, WENG C I. An analytical solution to coupled heat and moisture diffusion transfer in porous materials[J]. International Journal of Heat and Mass Transfer, 2000, 43(19):3621-3632.
|
[5] |
LIU Y, WANG Y, WANG D, et al. Effect of moisture transfer on internal surface temperature[J]. Energy & Buildings, 2013, 60(6):83-91.
|
[6] |
孔凡红, 郑茂余. 围护结构热质耦合传递实验研究[J]. 太阳能学报, 2010, 31(7):879-884. KONG F H, ZHENG M Y. Experiment study on heat and mass coupled transfer on envelop[J]. Acta Energiae Solaris Sinica, 2010, 31(7):879-884.
|
[7] |
刘艳峰, 刘加平. 建筑外壁面传热系数分析[J]. 西安建筑科技大学学报(自然科学版), 2008, 40(3):407-412. LIU Y F, LIU J P. Study of numerical simulation of cleaning flow of pulse-jet filter bag in the cleaning process[J]. Journal of Xi'an University of Architecture &Technology (Natural Science Edition), 2008, 40(3):407-412.
|
[8] |
BOUKADIDA N, NASRALLAH S B. Mass and heat transfer during water evaporation in laminar flow inside a rectangular channel-validity of heat and mass transfer analogy[J]. International Journal of Thermal Sciences, 2001, 40(1):67-81.
|
[9] |
DEFRAEYE T, BLOCKEN B, CARMELIET J. Analysis of convective heat and mass transfer coefficients for convective drying of a porous flat plate by conjugate modelling[J]. International Journal of Heat & Mass Transfer, 2012, 55(1/2/3):112-124.
|
[10] |
ISKRA C R, JAMES C, TALUKDAR P, et al. Convective mass transfer coefficients for gypsum and wood paneling[J]. Journal of ASTM International, 2009, 6(4):1-23.
|
[11] |
CONRAD I, CHRIS J, CAREY S. Experimental determination of the convective mass transfer coefficient for gypsum paneling[C]//IEA ECBCS ANNEX. University of Saskatchewan, 2007:97-104.
|
[12] |
STEEMAN H J, T'JOEN C, BELLEGHEM M V, et al. Evaluation of the different definitions of the convective mass transfer coefficient for water evaporation into air[J]. International Journal of Heat & Mass Transfer, 2014, 52(15):3757-3766.
|
[13] |
宋伟, 孔庆媛, 李洪枚. 建材VOC散发过程模拟与传质参数测定新方法[J]. 化工学报, 2013, 64(3):912-923. SONG W, KONG Q Y, LI H M. New method for simulation of VOC emission from building materials and measurement of mass transfer parameters[J]. CIESC Journal, 2013, 64(3):912-923.
|
[14] |
刘晓华, 易晓勤, 江亿. 两种常用液体吸湿剂传质性能的比较[J]. 化工学报, 2009, 60(3):567-573. LIU X, YI X Q, JIANG Y. Mass transfer performance comparison of two commonly used liquid desiccant[J]. CIESC Journal, 2009, 60(3):567-573.
|
[15] |
闫增峰. 生土建筑室内热湿环境研究[D]. 西安:西安建筑科技大学, 2003. YAN Z F. Dynamic modelling of the indoor thermal and humidity environment in the adobe buildings[D]. Xi'an:Xi'an University of Architecture &Technology, 2003.
|
[16] |
BARLOW J F, BELCHER S E. A wind tunnel model for quantifying fluxes in the urban boundary layer[J]. Boundary-Layer Meteorology, 2002, 104(1):131-150.
|
[17] |
NARITA K I. Experimental study of the transfer velocity for urban surfaces with a water evaporation method[J]. Boundary-Layer Meteorology, 2007, 122(2):293-320.
|
[18] |
王莹莹. 围护结构湿迁移对室内热环境及空调负荷影响关系研究[D]. 西安:西安建筑科技大学, 2013. WANG Y Y. Research on the effect of the palisade structure moisture transfer on the indoor thermal environment and air-conditioning load[D]. Xi'an:Xi'an University of Architecture &Technology, 2013.
|
[19] |
FEEROUKHI M Y, AAHRI K, BELARBI R, et al. Experimental validation of coupled heat, air and moisture transfer modeling in multilayer building components[J]. Heat & Mass Transfer, 2015, 52(10):1-13.
|
[20] |
HAGISHIMA A, TANIMOTO J, NARITA K I. Intercomparisons of experimental convective heat transfer coefficients and mass transfer coefficients of urban surfaces[J]. Boundary-Layer Meteorology, 2005, 117(3):551-576.
|
[21] |
HAGISHIMA A, TANIMOTO J. Field measurements for estimating the convective heat transfer coefficient at building surfaces[J]. Building & Environment, 2003, 38(7):873-881.
|
[22] |
KOBAYASHI S, MORIKAWA K. Convective heat transfer coefficient of rooftop surface in downward heat flow[J]. Journal of Architecture Planning & Environmental Engineering, 2000, 65(536):21-27.
|
[23] |
KOBAYASHI S, KUROTANI Y. Convective heat transfer characteristics of rooftop surface in summer[J]. Journal of Architecture Planning & Environmental Engineering, 1994, 59(465):11-17.
|
[24] |
张泠, 汤广发, 陈友明, 等. 建筑墙体表面传热系数辨识研究[J]. 暖通空调, 2002, 32(2):89-91. ZHANG L, TANG G F, CHEN Y M, et al. System identification of wall surface heat transfer coefficient[J]. Journal of HV & AC, 2002, 32(2):89-91.
|
[25] |
ZHANG L, ZHANG N, ZHAO F, et al. A genetic-algorithm-based experimental technique for determining heat transfer coefficient of exterior wall surface[J]. Applied Thermal Engineering, 2004, 24(2/3):339-349.
|
[26] |
刘京, 付志鹏, 邵建涛, 等. 应用萘升华法实测建筑外表面对流换热[J]. 天津大学学报(自然科学与工程技术版), 2009, 42(8):683-688. LIU J, FU Z P, SHAO J T, et al. Field measurement of convective heat transfer on external surface of building using naphthalene sublimation method[J]. Journal of Tianjin University(Science and Technology), 2009, 42(8):683-688.
|
[27] |
李超, 肖劲松, 张敏, 等. 热流计测量精度影响因素的数值分析[J]. 节能, 2005, 271(2):3-7. LI C, XIAO J S, ZHANG M, et al. Numerical analysis of influencing factors on heat flux sensors measurement precision[J]. Energy Conservation, 2005, 271(2):3-7.
|
[28] |
AMBROSE D, LAWRENSON I J, SPRAKE C H S. The vapour pressure of naphthalene[J]. Journal of Chemical Thermodynamics, 1975, 7(12):1173-1176.
|
[29] |
俞昌铭. 多孔材料传热传质及其数值分析[M]. 北京:清华大学出版社, 2011:116. YU C M. Numerical Analysis of Heat and Mass Transfer for Porous Materials[M]. Beijing:Tsinghua University Press, 2011:116.
|
[30] |
GOLDSTEIN R J, CHO H H. A review of mass transfer measurements using naphthalene sublimation[J]. Experimental Thermal & Fluid Science, 1995, 10(4):416-434.
|