CIESC Journal ›› 2018, Vol. 69 ›› Issue (10): 4239-4245.DOI: 10.11949/j.issn.0438-1157.20180308
Previous Articles Next Articles
BAI Lu, XIE Jingchao, CHEN Mo, CUI Yaping, LIU Jiaping
Received:
2018-03-22
Revised:
2018-07-13
Online:
2018-10-05
Published:
2018-10-05
Supported by:
supported by the National Key R&D Program of China (2017YFC0702601), the Major Program of the National Natural Science Foundation of China (51590912) and the Natural Science Foundation of Beijing (8182010).
白璐, 谢静超, 陈默, 崔亚平, 刘加平
通讯作者:
谢静超
基金资助:
国家重点研发计划项目(2017YFC0702601);国家自然科学基金重大项目(51590912);北京市自然科学基金项目(8182010)。
CLC Number:
BAI Lu, XIE Jingchao, CHEN Mo, CUI Yaping, LIU Jiaping. Measurement method of convective mass transfer coefficient on building surface[J]. CIESC Journal, 2018, 69(10): 4239-4245.
白璐, 谢静超, 陈默, 崔亚平, 刘加平. 建筑外表面对流传质系数的测量方法[J]. 化工学报, 2018, 69(10): 4239-4245.
[1] | QIN M, BELARBI R, AIT-MOKHTAR A, et al. Coupled heat and moisture transfer in multi-layer building materials[J]. Construction & Building Materials, 2009, 23(2):967-975. |
[2] | GAUR R C, BANSAL N K. Effect of moisture transfer across building components on room temperature[J]. Building & Environment, 2002, 37(1):11-17. |
[3] | OLUTIMAYIN S O, SIMONSON C J. Measuring and modeling vapor boundary layer growth during transient diffusion heat and moisture transfer in cellulose insulation[J]. International Journal of Heat & Mass Transfer, 2005, 48(16):3319-3330. |
[4] | CHANG W J, WENG C I. An analytical solution to coupled heat and moisture diffusion transfer in porous materials[J]. International Journal of Heat and Mass Transfer, 2000, 43(19):3621-3632. |
[5] | LIU Y, WANG Y, WANG D, et al. Effect of moisture transfer on internal surface temperature[J]. Energy & Buildings, 2013, 60(6):83-91. |
[6] | 孔凡红, 郑茂余. 围护结构热质耦合传递实验研究[J]. 太阳能学报, 2010, 31(7):879-884. KONG F H, ZHENG M Y. Experiment study on heat and mass coupled transfer on envelop[J]. Acta Energiae Solaris Sinica, 2010, 31(7):879-884. |
[7] | 刘艳峰, 刘加平. 建筑外壁面传热系数分析[J]. 西安建筑科技大学学报(自然科学版), 2008, 40(3):407-412. LIU Y F, LIU J P. Study of numerical simulation of cleaning flow of pulse-jet filter bag in the cleaning process[J]. Journal of Xi'an University of Architecture &Technology (Natural Science Edition), 2008, 40(3):407-412. |
[8] | BOUKADIDA N, NASRALLAH S B. Mass and heat transfer during water evaporation in laminar flow inside a rectangular channel-validity of heat and mass transfer analogy[J]. International Journal of Thermal Sciences, 2001, 40(1):67-81. |
[9] | DEFRAEYE T, BLOCKEN B, CARMELIET J. Analysis of convective heat and mass transfer coefficients for convective drying of a porous flat plate by conjugate modelling[J]. International Journal of Heat & Mass Transfer, 2012, 55(1/2/3):112-124. |
[10] | ISKRA C R, JAMES C, TALUKDAR P, et al. Convective mass transfer coefficients for gypsum and wood paneling[J]. Journal of ASTM International, 2009, 6(4):1-23. |
[11] | CONRAD I, CHRIS J, CAREY S. Experimental determination of the convective mass transfer coefficient for gypsum paneling[C]//IEA ECBCS ANNEX. University of Saskatchewan, 2007:97-104. |
[12] | STEEMAN H J, T'JOEN C, BELLEGHEM M V, et al. Evaluation of the different definitions of the convective mass transfer coefficient for water evaporation into air[J]. International Journal of Heat & Mass Transfer, 2014, 52(15):3757-3766. |
[13] | 宋伟, 孔庆媛, 李洪枚. 建材VOC散发过程模拟与传质参数测定新方法[J]. 化工学报, 2013, 64(3):912-923. SONG W, KONG Q Y, LI H M. New method for simulation of VOC emission from building materials and measurement of mass transfer parameters[J]. CIESC Journal, 2013, 64(3):912-923. |
[14] | 刘晓华, 易晓勤, 江亿. 两种常用液体吸湿剂传质性能的比较[J]. 化工学报, 2009, 60(3):567-573. LIU X, YI X Q, JIANG Y. Mass transfer performance comparison of two commonly used liquid desiccant[J]. CIESC Journal, 2009, 60(3):567-573. |
[15] | 闫增峰. 生土建筑室内热湿环境研究[D]. 西安:西安建筑科技大学, 2003. YAN Z F. Dynamic modelling of the indoor thermal and humidity environment in the adobe buildings[D]. Xi'an:Xi'an University of Architecture &Technology, 2003. |
[16] | BARLOW J F, BELCHER S E. A wind tunnel model for quantifying fluxes in the urban boundary layer[J]. Boundary-Layer Meteorology, 2002, 104(1):131-150. |
[17] | NARITA K I. Experimental study of the transfer velocity for urban surfaces with a water evaporation method[J]. Boundary-Layer Meteorology, 2007, 122(2):293-320. |
[18] | 王莹莹. 围护结构湿迁移对室内热环境及空调负荷影响关系研究[D]. 西安:西安建筑科技大学, 2013. WANG Y Y. Research on the effect of the palisade structure moisture transfer on the indoor thermal environment and air-conditioning load[D]. Xi'an:Xi'an University of Architecture &Technology, 2013. |
[19] | FEEROUKHI M Y, AAHRI K, BELARBI R, et al. Experimental validation of coupled heat, air and moisture transfer modeling in multilayer building components[J]. Heat & Mass Transfer, 2015, 52(10):1-13. |
[20] | HAGISHIMA A, TANIMOTO J, NARITA K I. Intercomparisons of experimental convective heat transfer coefficients and mass transfer coefficients of urban surfaces[J]. Boundary-Layer Meteorology, 2005, 117(3):551-576. |
[21] | HAGISHIMA A, TANIMOTO J. Field measurements for estimating the convective heat transfer coefficient at building surfaces[J]. Building & Environment, 2003, 38(7):873-881. |
[22] | KOBAYASHI S, MORIKAWA K. Convective heat transfer coefficient of rooftop surface in downward heat flow[J]. Journal of Architecture Planning & Environmental Engineering, 2000, 65(536):21-27. |
[23] | KOBAYASHI S, KUROTANI Y. Convective heat transfer characteristics of rooftop surface in summer[J]. Journal of Architecture Planning & Environmental Engineering, 1994, 59(465):11-17. |
[24] | 张泠, 汤广发, 陈友明, 等. 建筑墙体表面传热系数辨识研究[J]. 暖通空调, 2002, 32(2):89-91. ZHANG L, TANG G F, CHEN Y M, et al. System identification of wall surface heat transfer coefficient[J]. Journal of HV & AC, 2002, 32(2):89-91. |
[25] | ZHANG L, ZHANG N, ZHAO F, et al. A genetic-algorithm-based experimental technique for determining heat transfer coefficient of exterior wall surface[J]. Applied Thermal Engineering, 2004, 24(2/3):339-349. |
[26] | 刘京, 付志鹏, 邵建涛, 等. 应用萘升华法实测建筑外表面对流换热[J]. 天津大学学报(自然科学与工程技术版), 2009, 42(8):683-688. LIU J, FU Z P, SHAO J T, et al. Field measurement of convective heat transfer on external surface of building using naphthalene sublimation method[J]. Journal of Tianjin University(Science and Technology), 2009, 42(8):683-688. |
[27] | 李超, 肖劲松, 张敏, 等. 热流计测量精度影响因素的数值分析[J]. 节能, 2005, 271(2):3-7. LI C, XIAO J S, ZHANG M, et al. Numerical analysis of influencing factors on heat flux sensors measurement precision[J]. Energy Conservation, 2005, 271(2):3-7. |
[28] | AMBROSE D, LAWRENSON I J, SPRAKE C H S. The vapour pressure of naphthalene[J]. Journal of Chemical Thermodynamics, 1975, 7(12):1173-1176. |
[29] | 俞昌铭. 多孔材料传热传质及其数值分析[M]. 北京:清华大学出版社, 2011:116. YU C M. Numerical Analysis of Heat and Mass Transfer for Porous Materials[M]. Beijing:Tsinghua University Press, 2011:116. |
[30] | GOLDSTEIN R J, CHO H H. A review of mass transfer measurements using naphthalene sublimation[J]. Experimental Thermal & Fluid Science, 1995, 10(4):416-434. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[6] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[7] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[8] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[9] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[10] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[11] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[12] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[13] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[14] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[15] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 515
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 396
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||