[1] |
CHEN S, WANG M, XIA Z. Multiscale fluid mechanics and modeling[J]. Procedia Iutam, 2014, 10(10):100-114.
|
[2] |
GRECOV D, DE ANDRADE LIMA L R P, REY A D. Multiscale simulation of flow-induced texture formation in polymer liquid crystals and carbonaceous mesophases[J]. Molecular Simulation, 2005, 31(2/3):185-199.
|
[3] |
O'CONNELL S T, THOMPSON P A. Molecular dynamics continuum hybrid computations:a tool for studying complex fluid flows[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1995, 52(6):R5792.
|
[4] |
HADJICONSTANTINOU N G, PATERA A T. Heterogeneous atomistic-continuum representations for dense fluid systems[J]. International Journal of Modern Physics C, 1997, 8(4):9700083.
|
[5] |
WAGNER G, FLEKKØY E G. Hybrid computations with flux exchange[J]. Philos. Trans. A Math. Phys. Eng. Sci., 2004, 362(1821):1655-1665.
|
[6] |
NIE X B, CHEN S Y, E W N, et al. A continuum and molecular dynamics hybrid method for micro-and nano-fluid flow[J]. Journal of Fluid Mechanics, 2004, 500(500):55-64.
|
[7] |
DELGADO-BUSCALIONI R. Tools for multiscale simulation of liquids using open molecular dynamics[J]. Lecture Notes in Computational Science & Engineering, 2012, 82:145-166.
|
[8] |
ZHOU W J, LUAN H B, HE Y L, et al. Erratum to:a study on boundary force model used in multiscale simulations with non-periodic boundary condition[J]. Microfluidics & Nanofluidics, 2016, 20(6):93.
|
[9] |
YASUDA S, YAMAMOTO R. Multiscale modeling and simulation for polymer melt flows between parallel plates[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2010, 81(2):036308.
|
[10] |
SUN J, HE Y L, TAO W Q. Molecular dynamics-continuum hybrid simulation for condensation of gas flow in a microchannel[J]. Microfluidics & Nanofluidics, 2009, 7(3):407.
|
[11] |
LIU J, CHEN S, NIE X, et al. A continuum-atomistic simulation of heat transfer in micro-and nano-flows[J]. Journal of Computational Physics, 2007, 227(1):279-291.
|
[12] |
LIU J, CHEN S, NIE X, et al. A continuum-atomistic multi-timescale algorithm for micro/nano flows[J]. Communications in Computational Physics, 2008, 4(5):1279-1291.
|
[13] |
FLEKKØY E G, WAGNER G, FEDER J. Hybrid model for combined particle and continuum dynamics[J]. EPL, 2007, 52(3):271.
|
[14] |
LIU G, ZHANG J, WANG M. Drop movements and replacement on surface driven by shear force via hybrid atomistic-continuum simulations[J]. Molecular Simulation, 2016, 42(10):1-8.
|
[15] |
刘广志. 多相渗流的多尺度模拟与分析[D]. 北京:清华大学, 2016. LIU G Z. Multiphase flow in porous media by multiscale simulation and analysis[D]. Beijing:Tsinghua University, 2016.
|
[16] |
XIE C, ZHANG J, BERTOLA V, et al. Lattice Boltzmann modeling for multiphase viscoplastic fluid flow[J]. Journal of Non-Newtonian Fluid Mechanics, 2016, 234:118-128.
|
[17] |
周陆军, 宣益民, 李强. 纳米流体多相流动的多尺度模拟方法[J]. 计算物理, 2009, 26(6):849-856. ZHOU L J, XUAN Y M, LI Q. Multiscale simulation of multiphase flow in nanofluids[J]. Chinese Journal of Computational Physics, 2009, 26(6):849-856.
|
[18] |
孙海. 页岩气藏多尺度流动模拟理论与方法[D]. 东营:中国石油大学(华东), 2013. SUN H. Multi-scale flow simulation theory and method for shale gas reservoirs[D]. Dongying:China University of Petroleum, 2013.
|
[19] |
张小华, 欧阳洁, 孔倩. 聚合物流动的多尺度模拟[J]. 化工学报, 2007, 58(8):1897-1904. ZHANG X H, OUYANG J, KONG Q. Multi-scale simulation of polymer flow[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(8):1897-1904.
|
[20] |
葛蔚, 刘新华, 任瑛, 等. 从多尺度到介尺度——复杂化工过程模拟的新挑战[J]. 化工学报, 2010, 61(7):1613-1620. GE W, LIU X H, REN Y, et al. From multi-scale to mesoscale:new challenges in complex chemical process simulation[J]. CIESC Journal, 2010, 61(7):1613-1620.
|
[21] |
刘佰奇. 在纳通道中纳米流体传热机理研究及液氩流动过程多尺度模拟[D]. 北京:中国科学院大学, 2012. LIU B Q. Study on heat transfer mechanism of nanofluid in nanochannels and multi-scale simulation of flow in liquid argon[D]. Beijing:University of Chinese Academy of Sciences, 2012.
|
[22] |
KHARE R, PABLO J D, YETHIRAJ A. Rheological, thermodynamic, and structural studies of linear and branched alkanes under shear[J]. Journal of Chemical Physics, 1997, 107(17):6956-6964.
|
[23] |
LEE S H, CUMMINGS P T. The rheology of n-butane and i-butane by non-equilibrium molecular dynamics simulations[J]. Molecular Simulation, 1996, 16(4/5/6):229-247.
|
[24] |
THOMPSON P A, TROIAN S M. A general boundary condition for liquid flow at solid surfaces[J]. Nature, 1997, 389(6649):360-362.
|
[25] |
NOBLE D R, CHEN S, GEORGIADIS J G, et al. A consistent hydrodynamic boundary condition for the lattice Boltzmann method[J]. Physics of Fluids, 1995, 7(1):203-209.
|
[26] |
YOUNGLOVE B A, ELY J F. Thermophysical properties of fluids(Ⅱ):Methane, ethane, propane, isobutane, and normal butane[J]. Journal of Physical & Chemical Reference Data, 1987, (4):577-798.
|
[27] |
STEWART R B, JACOBSEN R T. Thermodynamic properties of argon from the triple point to 1200 K with pressures to 1000 MPa[J]. Journal of Physical & Chemical Reference Data, 1989, 18(2):639-798.
|
[28] |
CUMMINGS P T, EVANS D J. Nonequilibrium molecular dynamics approaches to transport properties and non-Newtonian fluid rheology[J]. Industrial & Engineering Chemistry Research, 1992, 31(5):1237-1252.
|
[29] |
BORZSAK I, CUMMINGS P, EVANS D. Shear viscosity of a simple fluid over a wide range of strain rates[J]. Molecular Physics, 2002, 100(16):2735-2738.
|
[30] |
CUMMINGS P T, WANG B Y, EVANS D J, et al. Nonequilibrium molecular dynamics calculation of self-diffusion in a non-Newtonian fluid subject to a Couette strain field[J]. Journal of Chemical Physics, 1991, 94(3):2149-2158.
|
[31] |
BAIR S, MCCABE C, CUMMINGS P T. Comparison of nonequilibrium molecular dynamics with experimental measurements in the nonlinear shear-thinning regime[J]. Physical Review Letters, 2002, 88(5):058302.
|