[1] |
程乐鸣, 许霖杰, 夏云飞, 等. 600 MW超临界循环流化床锅炉关键问题研究[J]. 中国电机工程学报, 2015, 35(21):5520-5532. CHENG L M, XU L J, XIA Y F, et al. Key issues and solutions in development of the 600 MW CFB boiler[J]. Proceedings of the CSEE, 2015, 35(21):5520-5532.
|
[2] |
宋畅, 杨海瑞, 吕俊复, 等. 超临界及超超临界循环流化床锅炉技术研究与应用[J]. 中国电机工程学报, 2018, 38(2):338-349. SONG C, YANG H R, LÜ J F, et al. Research and application of supercritical and ultra-supercritical circulating fluidized bed boiler technology[J]. Proceedings of the CSEE, 2018, 38(2):338-349.
|
[3] |
许霖杰, 程乐鸣, 邹阳军, 等. 1000 MW超临界循环流化床锅炉环形炉膛气固流动特性数值模拟[J]. 中国电机工程学报, 2015, 35(10):2480-2486. XU L J, CHENG L M, ZOU Y J, et al. Numerical study of gas-solids flow characteristics in a 1000 MW supercritical CFB boiler octagonal furnace[J]. Proceedings of the CSEE, 2015, 35(10):2480-2486.
|
[4] |
蒋敏华, 肖平. 大型循环流化床锅炉技术[M]. 北京:中国电力出版社, 2009:13. JIANG M H, XIAO P. Large-scale Circulating Fluidized Bed Boiler Technology[M]. Beijing:China Electric Power Press, 2009:13.
|
[5] |
ANTHONY E J, GRANATSTEIN D L. Sulfation phenomena in fluidized bed combustion systems[J]. Progress in Energy and Combustion Science, 2001, 27(2):215-236.
|
[6] |
China Association for Science and Technology. Ten key problems in energy and power field[EB/OL].[2018-5-30].http://www.cers.org.cn/index.php?m=content&c=index&a=show&catid=17&id=653.
|
[7] |
BORGWARDT R H. Kinetics of the reaction of SO2 with calcined limestone[J]. Environmental Science & Technology, 1970, 4(1):59-63.
|
[8] |
WANG C, ZHANG Y, JIA L, et al. Effect of water vapor on the pore structure and sulfation of CaO[J]. Fuel, 2014, 130:60-65.
|
[9] |
陈亮, 王子铭, 王春波. 流化床锅炉内石灰石同时煅烧/硫化反应中煅烧动力学特性[J]. 化工学报, 2017, 68(12):4615-4624. CHEN L, WANG Z M, WANG C B. Limestone calcination kinetics in simultaneous calcination and sulfation under CFB conditions[J]. CIESC Journal, 2017, 68(12):4615-4624.
|
[10] |
王子铭, 陈亮, 岳爽, 等. 同时煅烧硫化反应中石灰石微观孔结构演变特性[J]. 化工学报, 2018, 69(5):2149-2157. WANG Z M, CHEN L, YUE S, et al. Microstructure evolution of procedural products during limestone simultaneous calcination/sulfation[J]. CIESC Journal, 2018, 69(5):2149-2157.
|
[11] |
WANG C, CHEN L, JIA L, et al. Simultaneous calcination and sulfation of limestone in CFBB[J]. Applied Energy, 2015, 155:478-484.
|
[12] |
CHEN L, WANG C, WANG Z, et al. The kinetics and pore structure of sorbents during the simultaneous calcination/sulfation of limestone in CFB[J]. Fuel, 2017, 208:203-213.
|
[13] |
SZEKELY J, EVANS J W. A structural model for gas-solid reactions with a moving boundary[J]. Chemical Engineering Science, 1970, 25(6):1091-1107.
|
[14] |
PETERSEN E E. Reaction of porous solids[J]. AIChE Journal, 1957, 4(3):443-448.
|
[15] |
GEORGAKIS C, CHANG C W, SZEKELY J. A changing grain size model for gas-solid reactions[J]. Chemical Engineering Science, 1979, 34(8):1072-1075.
|
[16] |
LINDNER B, SIMONSSON D. Comparison of structural models for gas-solid reactions in porous solids undergoing structural changes[J]. Chemical Engineering Science, 1981, 36(9):1519-1527.
|
[17] |
CHRISTMAN P G, EDGAR T F. Distributed pore-size model for sulfation of limestone[J]. AIChE Journal, 1983, 29(3):388-395.
|
[18] |
BHATIA S K, PERLMUTTER D D. A rondom pore model for fluid-solid reactions (I):Isothermal, kinetic control[J]. AIChE Journal, 1980, 26(3):379-386.
|
[19] |
BHATIA S K, PERLMUTTER D D. A random pore model for fluid-solid reactions (Ⅱ):Diffusion and transport effects[J]. AIChE Journal, 1981, 27(2):247-254.
|
[20] |
MAHULI S K, AGNIHOTRI R, JADHAV R, et al. Combined calcination, sintering and sulfation model for CaCO3-SO2 reaction[J]. AIChE Journal, 1999, 45(2):367-382.
|
[21] |
KEENER S U. A study of the concomitant calcination and sulfation reactions of calcium carbonate and sulfur dioxide[D]. Cincinnati:University of Cincinnati, 1992.
|
[22] |
BHATIA S K, PERLMUTTER D D. The effect of pore structure on fluid-solid reactions application to the SO2-lime reaction[J]. AIChE Journal, 1981, 27(2):226-234.
|
[23] |
KHINAST J, KRAMMER G F, BRUNNER C, et al. Decomposition of limestone:the influence of CO2 and particle size on the reaction rate[J]. Chemical Engineering Science, 1996, 51(4):623-634.
|
[24] |
HSIA C, PIERRE G R S, FAN L. Isotope study on diffusion in CaSO4 formed during sorbent-flue-gas reaction[J]. AIChE Journal, 1995, 41(10):2337-2340.
|
[25] |
HSIA C, ST PIERRE G R, RAGHUNATHAN K, et al. Diffusion through CaSO4 formed during the reaction of CaO with SO2 and O2[J]. AIChE Journal, 1993, 39(4):698-700.
|
[26] |
BORGWARDT R H. Sintering of nascent calcium oxide[J]. Chemical Engineering Science, 1989, 44(1):53-60.
|
[27] |
MILNE C R, SILCOX G D, PERSHING D W, et al. High-temperature, short-time sulfation of calcium-based sorbents (Ⅰ):Theoretical sulfation model[J]. Industrial & Engineering Chemistry Research, 1990, 29(11):2192-2201.
|
[28] |
HUIZENGA D G, SMITH D M. Knudesen diffusion in random assemblages of uniform spheres[J]. AIChE Journal, 1986, 32(1):1-6.
|
[29] |
GARCÍA-LABIANO F, ABAD A, De DIEGO L F, et al. Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations[J]. Chemical Engineering Science, 2002, 57(13):2381-2393.
|
[30] |
MILNE C R, SILCOX G D, PERSHING D W, et al. Calcination and sintering models for application to high-temperature, short-time sulfation of calcium-based sorbents[J]. Industrial & Engineering Chemistry Research, 1990, 29(2):139-149.
|