[1] |
GE Z, SONG Z. Performance-driven ensemble learning ICA model for improved non-Gaussian process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 123(2):1-8.
|
[2] |
LI R Y, RONG G. Fault isolation by partial dynamic principal component analysis in dynamic process[J]. Chinese Journal of Chemical Engineering, 2006, 14(4):486-493.
|
[3] |
RUSSELL E L, CHIANG L H, BRAATZ R D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 51(1):81-93.
|
[4] |
王光, 孙程远, 尹珅. 基于动态全主成分回归质量相关的故障检测[J]. 信息与控制, 2017, 46(6):671-676. WANG G, SUN C Y, YIN K. Quality related fault detection approach based on dynamic total principal component regression component regression[J]. Information and Control, 2017, 46(6):671-676.
|
[5] |
蓝艇, 童楚东, 史旭华. 变量加权型主元分析算法及其在故障检测中的应用[J]. 化工学报, 2017, 68(8):3177-3182. LAN T, TONG C D, SHI X H. Variable weighted principal component analysis algorithm and its application in fault detection[J]. CIESC Journal, 2017, 68(8):3177-3182.
|
[6] |
童楚东, 蓝艇, 史旭华. 基于互信息的分散式动态PCA故障检测方法[J]. 化工学报, 2016, 67(10):4317-4323. TONG C D, LAN T, SHI X H. Fault detection by decentralized dynamic PCA algorithm on mutual information[J]. CIESC Journal, 2016, 67(10):4317-4323.
|
[7] |
赵帅, 宋冰, 侍洪波.基于加权互信息主元分析算法的质量相关故障检测[J]. 化工学报, 2018, 69(3):962-973. ZHAO S, SONG B, SHI H B. Quality-related fault detection based on weighted mutual information principal component analysis[J]. CIESC Journal, 2018, 69(3):962-973.
|
[8] |
LEE J M, QIN S J, LEE I B. Fault detection and diagnosis based on modified independent component analysis[J]. AIChE Journal, 2006, 52(10):3501-3514.
|
[9] |
LEE J, QIN S, LEE I. Fault detection of non-linear processes using kernel independent component analysis[J]. Canadian Journal of Chemical Engineering, 2007, 85(4):526-536.
|
[10] |
LEE J M, YOO C K, LEE I B. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14(5):467-485.
|
[11] |
GE R, ZHOU M, LUO Y, et al. McTwo:a two-step feature selection algorithm based on maximal information coefficient[J]. BMC Bioinformatics, 2016, 17(1):142-155.
|
[12] |
LI S, ZHOU X, PAN F, et al. Correlated and weakly correlated fault detection based on variable division and ICA[J]. Computers & Industrial Engineering, 2017, 112:320-335.
|
[13] |
ZHANG Y, LI S, HU Z, et al. Dynamical process monitoring using dynamical hierarchical kernel partial least squares[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 118:150-158.
|
[14] |
CHEN J, LIU K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models[J]. Chemical Engineering Science, 2002, 57(1):63-75.
|
[15] |
KANO M, TANAKA S, HASEBE S, et al. Combined multivariate statistical process control[J]. IFAC Proceedings Volumes, 2004, 37(1):281-286.
|
[16] |
LIU X, XIE L, KRUGER U, et al. Statistical-based monitoring of multivariate non-Gaussian systems[J]. AIChE Journal, 2008, 54(9):2379-2391.
|
[17] |
ZHANG Y, LI S, HU Z. Improved multi-scale kernel principal component analysis and its application for fault detection[J]. Chemical Engineering Research & Design, 2012, 90:1271-1280.
|
[18] |
LI S, ZHOU X, SHI H, et al. Monitoring of multimode processes based on subspace decomposition[J]. Industrial & Engineering Chemistry Research, 2015, 54:3855-3864.
|
[19] |
HUANG J, YAN X. Dynamic process fault detection and diagnosis based on dynamic principal component analysis, dynamic independent component analysis and Bayesian inference[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 148(15):115-127.
|
[20] |
BERA A K, JARQUE C M. Efficient tests for normality, homoscedasticity and serial independence of regression residuals:Monte Carlo evidence[J]. Economics Letters, 1980, 7(4):313-318.
|
[21] |
D'AGOSRINO R, PEARSON E S. Tests for departure from normality. Empirical results for the distributions of b2 and √b1[J]. Biometrika, 1973, 60(3):613-622.
|
[22] |
D'AGOSTINO R, PEARSON E S. Corrections and amendments:tests for departure from normality. Empirical results for the distributions of b2 and √b1[J]. Biometrika, 1974, 61(3):647-647.
|
[23] |
衷路生, 何东, 龚锦红, 等. 基于分布式ICA-PCA模型的工业过程故障监测[J]. 化工学报, 2015, 66(11):4546-4554. ZHONG L S, HE D, GONG J H, et al. Fault monitoring of industrial process based on distributed ICA-PCA model[J]. CIESC Journal, 2015, 66(11):4546-4554.
|
[24] |
郭校根, 熊伟丽, 徐保国. 基于局部邻域标准化和贝叶斯推断的多工况过程监测[J]. 信息与控制, 2017, 46(1):113-121. GUO X G, XIONG W L, XU B G. Multimode process monitoring based on local neighborhood standardization and Bayesian inference[J]. Information and Control, 2017, 46(1):113-121.
|
[25] |
ZHANG Y, LI S. Modeling and monitoring between-mode transition of multimode processes[J]. IEEE Transactions on Industrial Informatics, 2013, 9:2248-2255.
|
[26] |
TONG C, PALAZOGLU A, YAN X. Improved ICA for process monitoring based on ensemble learning and Bayesian inference[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 135:141-149.
|
[27] |
JIANG Q, YAN X, LI J. PCA-ICA integrated with Bayesian method for non-Gaussian fault diagnosis[J]. Industrial & Engineering Chemistry Research, 2016, 55:4979-4986.
|
[28] |
GE Z, ZHANG M, SONG Z. Nonlinear process monitoring based on linear subspace and Bayesian inference[J]. Journal of Process Control, 2010, 20(5):676-688.
|
[29] |
DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255.
|
[30] |
ZHANG Y, LI S, TENG Y. Dynamic processes monitoring using recursive kernel principal component analysis[J]. Chemical Engineering Science, 2012, 72:78-86.
|