[1] |
WANG Z, HE S, GU X, et al. Fault detection and diagnosis of chillers using Bayesian network merged distance rejection and multi-source non-sensor information[J]. Applied Energy, 2017, 188(10):200-214.
|
[2] |
ZHAO Y, WANG S, XIAO F. Pattern recognition-based chillers fault detection method using support vector data description (SVDD)[J]. Applied Energy, 2013, 112(4):1041-1048.
|
[3] |
LI G, HU Y, CHEN H, et al. An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm[J]. Energy and Buildings, 2016, 116(13):104-113.
|
[4] |
CHINE W, MELLIT A, LUGHI V, et al. A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks[J]. Renewable Energy, 2016, 90(9):501-512.
|
[5] |
YIN S, WANG G, GAO H. Data-driven process monitoring based on modified orthogonal projections to latent structures[J]. IEEE Transactions on Control Systems Technology, 2016, 24(4):1480-1487.
|
[6] |
REN H, CHAI Y, QU J, et al. A novel adaptive fault detection methodology for complex system using deep belief networks and multiple models:a case study on cryogenic propellant loading system[J]. Neurocomputing, 2017, 2(10):123-133.
|
[7] |
AHMED H O A, WONG M L D, NANDI A K. Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features[J]. Mechanical Systems and Signal Processing, 2018, 99(17):459-477.
|
[8] |
WU H, ZHAO J. Deep convolutional neural network model based chemical process fault diagnosis[J]. Computers & Chemical Engineering, 2018, 115(1):185-197.
|
[9] |
WEN L, LI X, GAO L, et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7):5990-5998.
|
[10] |
LEE K B, CHEON S, KIM C O. A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes[J]. IEEE Transactions on Semiconductor Manufacturing, 2017, 30(2):135-142.
|
[11] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
|
[12] |
COMSTOCK M C, BRAUN J E, BERNHARD R. Development of Analysis Tools for the Evaluation of Fault Detection and Diagnostics in Chillers[M]. West Lafayette:Purdue University, 1999:221.
|
[13] |
李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1):1-9. LI H, XIAO D Y. Survey on data driven fault diagnosis methods[J]. Control and Decision, 2011, 26(1):1-9.
|
[14] |
ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500):2323-2326.
|
[15] |
BELKIN M, NIYOGI P. Laplacian Eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6):1373-1396.
|
[16] |
TENENBAUM J B, DE S V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500):2319-2323.
|
[17] |
LAI Z, WONG W K, XU Y, et al. Approximate orthogonal sparse embedding for dimensionality reduction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4):723-735.
|
[18] |
WANG J, KWON S, SHIM B. Generalized orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60(12):6202-6216.
|
[19] |
PATI Y C, REZAⅡFAR R, KRISHNAPRASAD P S. Orthogonal matching pursuit:recursive function approximation with applications to wavelet decomposition[C]//Signals, Systems and Computers, 1993. 1993 Conference Record of the Twenty-Seventh Asilomar Conference on. IEEE, 2002:40-44 vol.1.
|
[20] |
CHAN T H, JIA K, GAO S, et al. PCANet:a simple deep learning baseline for image classification?[J]. IEEE Transactions on Image Processing, 2015, 24(12):5017-5032.
|
[21] |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2015:1-9.
|
[22] |
BRUNA J, MALLAT S. Invariant scattering convolution networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1872-1886.
|
[23] |
JARRET K, KAVUKCUOGLU K, LECUN Y. What is the best multi-stage architecture for object recognition?[C]//Computer Vision. 2009 IEEE 12th International Conference on. IEEE, 2009:2146-2153.
|
[24] |
SIFRE L, MALLAT S. Rotation, scaling and deformation invariant scattering for texture discrimination[C]//Computer Vision and Pattern Recognition (CVPR). 2013 IEEE Conference on. IEEE, 2013:1233-1240.
|
[25] |
LOW C Y, TEOH A B J, TOH K A. Stacking PCANet+:an overly simplified ConvNets baseline for face recognition[J]. IEEE Signal Processing Letters, 2017, 24(11):1581-1585.
|
[26] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems. MIT Press, 2012:1097-1105.
|
[27] |
ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision. Cham:Springer, 2014:818-833.
|
[28] |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
|
[29] |
CARREIRA-PERPINAN M A, RAZIPERCHIKOLAEI R. Hashing with binary autoencoders[C]//Computer Vision and Pattern Recognition. 2015 IEEE Conference on. IEEE, 2015:557-566.
|
[30] |
SHEN F, SHEN C, SHI Q, et al. Hashing on nonlinear manifolds[J]. IEEE Transactions on Image Processing, 2015, 24(6):1839-1851.
|
[31] |
LIN T Y, DOLLAR P, GIRSHICH R, et al. Feature pyramid networks for object detection[C]//CVPR. IEEE, 2017, 1(2):3.
|
[32] |
TRAN D A T, CHEN Y, CHAU M Q, et al. A robust online fault detection and diagnosis strategy of centrifugal chiller systems for building energy efficiency[J]. Energy and Buildings, 2015, 108(13):441-453.
|
[33] |
HE S, WANG Z, WANG Z, et al. Fault detection and diagnosis of chiller using Bayesian network classifier with probabilistic boundary[J]. Applied Thermal Engineering, 2016, 107(7):37-47.
|
[34] |
孟德宇. 关于流形学习若干基础问题与核心算法研究[D]. 西安:西安交通大学, 2008. MENG D Y. A research on several fundamental problems and core algorithms of manifold learning[D]. Xi'an:Xi'an Jiaotong University, 2008.
|
[35] |
PETTIS K W, BAILEY T A, JAIN A K, et al. An intrinsic dimensionality estimator from near-neighbor information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, 1(1):25-37.
|
[36] |
LI D, ZHOU Y, HU G, et al. Fault detection and diagnosis for building cooling system with a tree-structured learning method[J]. Energy and Buildings, 2016, 127(11):540-551.
|
[37] |
HINTON G, DENG L, YU D, et al. Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6):82-97.
|
[38] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
|