[1] |
RUÍZ-HUERTA E A, DELG V A, GÓMEZ-BERNAL J M, et al. Arsenic contamination in irrigation water, agricultural soil and maize crop from an abandoned smelter site in Matehuala, Mexico[J]. Journal of Hazardous Materials, 2017, 339:330.
|
[2] |
GARCÍA-CARMONA M, ROMERO-FREIRE A, ARAGÓN M S, et al. Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic[J]. Journal of Environmental Management, 2017, 191:228-236.
|
[3] |
赵婉雨, 杨雨寒. 土壤重金属污染修复技术分析[J]. 高科技与产业化, 2015, 11(9):64-69. ZHAO W Y, YANG Y H. Analysis on soil heavy metal pollution repair technology[J]. High-Technology & Industrialization, 2015, 11(9):64-69.
|
[4] |
RODRÍGUEZLADO L, SUN G, BERG M, et al. Groundwater arsenic contamination throughout China[J]. Science, 2013, 341(6148):866.
|
[5] |
陈寻峰. 砷污染土壤淋洗修复技术研究[D]. 长沙:湖南大学, 2016. CHEN X F. Research on leaching repair technology of arsenic-contaminated soil[D]. Changsha:Hunan University, 2016.
|
[6] |
PATRICIA M, ALICIA F C. Remediation of arsenic-contaminated soils by iron amendments:a review[J]. Critical Reviews in Environmental Science & Technology, 2010, 40(2):93-115.
|
[7] |
MAHESWARI S, MURUGESAN A G. Remediation of arsenic in soil by Aspergillus nidulans isolated from an arsenic-contaminated site[J]. Environmental Technology, 2009, 30(9):921-926.
|
[8] |
MA J, LEI E, LEI M, et al. Remediation of arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize[J]. Chemosphere, 2017, 194:737-744.
|
[9] |
SHIN S Y, PARK S M, BAEK K. Soil moisture could enhance electrokinetic remediation of arsenic-contaminated soil[J]. Environ. Sci. Pollut. Res. Int., 2017, 24(10):9820-9825.
|
[10] |
LIMA A T, HOFMANN A, REYNOLDS D, et al. Environmental electrokinetics for a sustainable subsurface[J]. Chemosphere, 2017, 181:122-133.
|
[11] |
VOCCIANTE M, BAGATIN R, FERRO S. Enhancements in electrokinetic remediation technology:focus on water management and wastewater recovery[J]. Chemical Engineering Journal, 2016, 309:708-716.
|
[12] |
LÓPEZ-VIZCAÍNO R, NAVARRO V, LEÓN M J, et al. Scale-up on electrokinetic remediation:engineering and technological parameters[J]. Journal of Hazardous Materials, 2016, 315:135-143.
|
[13] |
DONG Z Y, HUANG W H, XING D F, et al. Remediation of soil co-contaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulation[J]. Journal of Hazardous Materials, 2013, 260:399.
|
[14] |
VIGNOLA R, BAGATIN R, D'AURIS A D F, et al. Zeolites in a permeable reactive barrier (PRB):one year of field experience in a refinery groundwater(Part 1):The performances[J]. Chemical Engineering Journal, 2011, 178(140):204-209.
|
[15] |
BAIN J, SPINK L, BLOWES D, et al. The removal of arsenic from groundwater using permeable reactive materials[C]//The 9th International Conference on Tailings and Mine Waste. Fort Colling, Colorado, 2002:213-216.
|
[16] |
CHIANG T H. Study of the effect of permeable reactive barriers (PRB) on the electrokinetic remediation of arsenic contaminated soil[D]. Taiwan:National Sun Yat-Sen University, 2005.
|
[17] |
石荣, 贾永锋, 王承智. 土壤矿物质吸附砷的研究进展[J]. 土壤通报, 2007, 38(3):584-589. SHI R, JIA Y F, WANG C Z. Research progress of soil mineral adsorption of arsenic[J]. Chinese Journal of Soil Science, 2007, 38(3):584-589.
|
[18] |
ZHOU T, LI Y, JI J, et al. Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/H2O2, Fenton-like system:kinetic, pathway and effect factors[J]. Separation & Purification Technology, 2008, 62(3):551-558.
|
[19] |
GIASUDDIN A B M, KANEL S R, CHOI H. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal[J]. Environmental Science & Technology, 2007, 41(6):2022-7.
|
[20] |
YOON I H, KIM K W, BANG S, et al. Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion[J]. Applied Catalysis B Environmental, 2011, 104(1):185-192.
|
[21] |
BANG S, JOHNSON M D, KORFIATIS G P, et al. Chemical reactions between arsenic and zero-valent iron in water[J]. Water Research, 2005, 39(5):763-770.
|
[22] |
LI S S, JIANG M, JIANG T J, et al. Competitive adsorption behavior toward metal ions on nano-Fe/Mg/Ni ternary layered double hydroxide proved by XPS:evidence of selective and sensitive detection of Pb(Ⅱ)[J]. Journal of Hazardous Materials, 2017, 338:1-10.
|
[23] |
YU H, CHU Y, ZHANG T, et al. Recovery of tellurium from aqueous solutions by adsorption with magnetic nanoscale zero-valent iron (NZVFe)[J]. Hydrometallurgy, 2018, 177:1-8.
|
[24] |
YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+, and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8):2441-2449.
|
[25] |
MULLET M, KHARE V, RUBY C. XPS study of Fe(Ⅱ)?Fe(Ⅲ) (oxy)hydroxycarbonate green rust compounds[J]. Surface & Interface Analysis, 2010, 40(3/4):323-328.
|
[26] |
ABASS O K, MA T, KONG S, et al. A novel MD-ZVI integrated approach for high arsenic groundwater decontamination and effluent immobilization[J]. Process Safety & Environmental Protection, 2016, 102:190-203.
|
[27] |
KOLOBOV A V, BADYAL J P S, LAMBERT R M. Novel photoinduced surface oxidation of an amorphous semiconductor:an XPS study of vitreous arsenic sulphide[J]. Surface Science Letters, 1989, 222(2/3):L819-L824.
|
[28] |
JONES R A, NESBITT H W. XPS evidence for Fe and As oxidation states and electronic states in loellingite (FeAs2)[J]. American Mineralogist, 2002, 87(11/12):1692-1698.
|
[29] |
BAKSHI S, BANIK C, RATHKE S J, et al. Arsenic sorption on zero-valent iron-biochar complexes[J]. Water Research, 2018, 137:153.
|
[30] |
SUN F, OSSEO-ASARE K A, CHEN Y, et al. Reduction of As(Ⅴ) to As(Ⅲ) by commercial ZVI or As(0) with acid-treated ZVI[J]. Journal of Hazardous Materials, 2011, 196(12):311-317.
|