CIESC Journal ›› 2019, Vol. 70 ›› Issue (6): 2377-2385.DOI: 10.11949/j.issn.0438-1157.20181536
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Yan SUN1,2(),Jirong LAN1,2,Li GUO1,2,Peng SUN1,2,Hengpeng YE1,2,Dongyun DU1,2(
),Wei ZHAN1,2
Received:
2019-01-02
Revised:
2019-03-07
Online:
2019-06-05
Published:
2019-06-05
Contact:
Dongyun DU
孙燕1,2(),蓝际荣1,2,郭莉1,2,孙朋1,2,叶恒朋1,2,杜冬云1,2(
),占伟1,2
通讯作者:
杜冬云
作者简介:
<named-content content-type="corresp-name">孙燕</named-content>(1994—),女,硕士研究生,<email>YanSun0123@163.com</email>
基金资助:
CLC Number:
Yan SUN, Jirong LAN, Li GUO, Peng SUN, Hengpeng YE, Dongyun DU, Wei ZHAN. Preparation of As(Ⅲ) adsorbent material by electrolytic manganese slag and its properties[J]. CIESC Journal, 2019, 70(6): 2377-2385.
孙燕, 蓝际荣, 郭莉, 孙朋, 叶恒朋, 杜冬云, 占伟. 利用电解锰渣制备As(Ⅲ)吸附材料及其性能研究[J]. 化工学报, 2019, 70(6): 2377-2385.
Si | Al | Ca | Mg | Fe | S | Mn |
---|---|---|---|---|---|---|
23.99 | 2.1 | 10.53 | 1.95 | 7.24 | 25.92 | 4.82 |
Table 1 Main components of EMR/%
Si | Al | Ca | Mg | Fe | S | Mn |
---|---|---|---|---|---|---|
23.99 | 2.1 | 10.53 | 1.95 | 7.24 | 25.92 | 4.82 |
Element | EMRs | EMRs+ NaOH | EMRs+ NaOH+ ultrasound | EMRs + NaOH+ ultrasound+ microwave |
---|---|---|---|---|
Ca | 8.53 | 6.12 | 3.89 | 3.91 |
S | 15.02 | 12.56 | 0.24 | 0.12 |
Mn | 4.82 | 3.78 | 3.95 | 5.57 |
Fe | 7.24 | 4.24 | 3.85 | 8.17 |
Si | 23.99 | 13.22 | 7.13 | 7.51 |
O | 40.23 | 42.25 | 43.22 | 41.25 |
Table 2 Main content changes of EMRs samples with different modification methods/%(mass)
Element | EMRs | EMRs+ NaOH | EMRs+ NaOH+ ultrasound | EMRs + NaOH+ ultrasound+ microwave |
---|---|---|---|---|
Ca | 8.53 | 6.12 | 3.89 | 3.91 |
S | 15.02 | 12.56 | 0.24 | 0.12 |
Mn | 4.82 | 3.78 | 3.95 | 5.57 |
Fe | 7.24 | 4.24 | 3.85 | 8.17 |
Si | 23.99 | 13.22 | 7.13 | 7.51 |
O | 40.23 | 42.25 | 43.22 | 41.25 |
Item | Fe/ (mg·L-1) | Mn/ (mg·L-1) | Si/ (mg·L-1) | Ca/ (mg·L-1) | Na/ (mg·L-1) | SO4 2?/ (mg·L-1) | As/ (mg·L-1) | pH | Chromaticity (dilution factor) |
---|---|---|---|---|---|---|---|---|---|
after material treatment | 0.068 | 0.005 | 0.056 | 0.21 | 0.008 | 0.25 | 0. 042 | 7.3 | 5 |
GB 3838—2002 | 0.3 | 0.1 | — | — | — | 250 | 0.1—0.05 | 6—9 | 50—180 |
Table 3 Characteristics of synthesis wastewater after treated with material as compared with that shown in GB 3838—2002
Item | Fe/ (mg·L-1) | Mn/ (mg·L-1) | Si/ (mg·L-1) | Ca/ (mg·L-1) | Na/ (mg·L-1) | SO4 2?/ (mg·L-1) | As/ (mg·L-1) | pH | Chromaticity (dilution factor) |
---|---|---|---|---|---|---|---|---|---|
after material treatment | 0.068 | 0.005 | 0.056 | 0.21 | 0.008 | 0.25 | 0. 042 | 7.3 | 5 |
GB 3838—2002 | 0.3 | 0.1 | — | — | — | 250 | 0.1—0.05 | 6—9 | 50—180 |
1 | 姚瑛瑛, 郭莉, 胡中求, 等 .超声辅助碱浸铜冶炼烟灰中铜砷分离[J]. 化工学报, 2018, 69(9): 3983-3992. |
Yao Y Y , Guo L , Hu Z Q , et al . Separation of copper and arsenic in copper smelting dust by Na2S-NaOH leaching assisted with ultrasound method[J]. CIESC Journal, 2018, 69(9): 3983-3992. | |
2 | 彭昌军, 姜秀丽, 计红芳, 等 . 铁锰复合氧化物对As(Ⅲ)、As(Ⅴ)的吸附研究及其在沼液中的应用[J]. 化工学报, 2014, 65(5): 1848-1855. |
Peng C J , Jiang X L , Ji H F , et al . Adsorption behavior of Fe-Mn binary oxide towards As(Ⅲ) and As(V) and its application in biogas slurry[J]. CIESC Journal, 2014, 65(5): 1849-1855. | |
3 | Sun Z , Yi Y U , Pang S , et al . Manganese-modified activated carbon fiber (Mn-ACF): novel efficient adsorbent for arsenic[J]. Applied Surface Science, 2013, 284(11): 100-106. |
4 | Chen H Y , Lv K L , Du Y , et al . Microwave-assisted rapid synthesis of Fe2O3/ACF hybrid for high efficient As(Ⅴ) removal[J]. J. Alloy. Compd., 2016, 674(5): 399-405. |
5 | Zhang Y , Yang M , Gao Y . Preparation and adsorption mechanism of rare earth-doped adsorbent for arsenic(Ⅴ) removal from groundwater[J]. Sci. China Ser. B, 2003, 46(3): 252-258. |
6 | Halter W E , Pfeifer H . Arsenic(Ⅴ) adsorption onto α-Al2O3 between 25 and 70℃ [J]. Applied Geochemistry, 2001, 16(7): 793-802. |
7 | Stauffer R E , Thompson J M . Arsenic and antimony in geothermal waters of Yellow Stone National Park, Wyoming, USA[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2547-2561. |
8 | Pascua C S , Minato M , Yokoyama S . Uptake of dissolved arsenic during the retrieval of silica from spent geothermal brine[J]. Geothermics, 2007, 36(3): 230-242. |
9 | Romero L , Alonso H , Campamo P . Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile) [J]. Applied Geochemistry, 2003, 18(9): 1399-1416. |
10 | Berg M , Tran H C , Nguyen T C , et al . Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat[J]. Environmental Science & Technology, 2001, 35(13): 2621 -2626. |
11 | Zhang Y X , Ye Y J , Liu Z L , et al . Monodispersed hierarchical aluminum/iron oxides composites micro/nanoflowers for efficient removal of As(V) and Cr(VI) ions from water[J]. Journal of Alloys and Compounds, 2016, 662(25): 421-430. |
12 | Zhou J M , Chen S , Liu J , et al . Adsorption kinetic and species variation of arsenic for As(V) removal by biologically mackinawite (FeS) [J]. Chemical Engineering Journal, 2018, 354(8): 237-244. |
13 | 牛莎莎, 王志兴, 郭华军, 等 .电解锰阳极渣还原浸出锰[J]. 中国有色金属学报, 2012, 22(9): 2662-2666. |
Niu S S , Wang Z X , Guo H J , et al . Reductive leaching of manganese from manganese anode slag[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(9): 2662-2666. | |
14 | Shu J , Liu R , Liu Z . Solidification/stabilization of electrolytic manganese residue using phosphate resource and low-grade MgO/CaO[J]. Journal of Hazardous Materials, 2016, 317(5): 267-274. |
15 | Xin B , Chen B , Duan N . Extraction of manganese from electrolytic manganese residue by bioleaching[J]. Bioresource Technology, 2011, 102(2): 1683-1687. |
16 | Li C , Zhong H , Wang S , et al . Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue[J]. Journal of Industrial & Engineering Chemistry, 2015, 23: 344-352. |
17 | Chen H , Liu R , Liu Z . Immobilization of Mn and NH4 +-N from electrolytic manganese residue waste[J]. Environmental Science & Pollution Research, 2016, 23(12): 12352-12361. |
18 | Shu J , Wu H , Liu R , et al . Simultaneous stabilization /solidification of Mn2+ and NH4 +-N from electrolytic manganese residue using MgO and different phosphate resource[J]. Ecotoxicology & Environmental Safety, 2018, 148(4): 220-224. |
19 | Li J , Du D , Peng Q , et al . Activation of silicon in the electrolytic manganese residue by mechanical grinding-roasting[J]. Journal of Cleaner Production, 2018, 192(10): 347-353 |
20 | 李明强 . 电解锰渣中锰元素的浸取研究[D]. 重庆: 重庆大学, 2015. |
Li M Q . The leaching of manganese from electrolytic manganese residues[D]. Chongqing: Chongqing University, 2015. | |
21 | Shu J , Liu R , Liu Z . Simultaneous removal of ammonia and manganese from electrolytic metal manganese residue leachate using phosphate salt[J]. Journal of Cleaner Production, 2016, 135 (1): 468-475. |
22 | 盘俊, 谢能银, 明宪权, 等 . 锰矿浸渣中可溶锰离子的稳定化处理研究[J]. 广西大学学报(自然科学版), 2015, 40(3): 551-557. |
Pan J , Xie N Y , Ming X Q , et al . The stabilizing treatment for the soluble manganese in manganese leaching slag[J]. Journal of Guangxi University( Nat. Sci. Ed.), 2015, 40(3): 551-557. | |
23 | Lu J , Dreisinger D , Gluck T . Electrolytic manganese metal production from manganese carbonate precipitate[J]. Hydrometallurgy, 2016, 161(5): 45-53. |
24 | Li J , Peng Q J Du D Y , et al . Activation of silicon in the electrolytic manganese residue by mechanical grinding-roasting[J]. Journal of Cleaner Production, 2018, 192(10): 347-353. |
25 | 陈振兴, 李佳, 杜冬云, 等 . 硅酸盐细菌对电解锰渣中有效硅的活化研究[J]. 硅酸盐通报, 2018, 37(11): 3581-3586. |
Chen Z X , Li J , Du D Y , et al . Study on activation of effective silicon in electrolytic manganese slag by silicate bacteria[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3581-3586. | |
26 | 蓝际荣, 李佳, 杜冬云, 等 . 锰渣堆肥过程中理化性质及基于Tessier法的重金属行为分析[J]. 环境工程学报, 2017, 11(10): 5637-5643. |
Lan J R , Li J , Du D Y , et al . Physicochemical properties and heavy metals behavior analysis based on Tessier method in composting process of electrolytic manganese residue[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5637-5643. | |
27 | 彭秋菊, 李佳, 杜冬云, 等 . 响应面法优化电解锰渣的微波活化有效硅工艺条件[J]. 硅酸盐通报, 2018, 37(8): 2548-2554. |
Peng Q J , Li J , Du D Y , et al . Optimization of microwave activated effective silicon process conditions for electrolytic manganese residue by response surface methodology[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(8): 2548-2554. | |
28 | Eslami H , Ehrampoush M H , Esmaeili A , et al . Enhanced coagulation process by Fe-Mn bimetal nano-oxides in combination with inorganic polymer coagulants for improving As(Ⅴ) removal from contaminated water[J]. Journal of Cleaner Production, 2018, 208(10): 384-392. |
29 | Lan L J , Zheng B J , Zhang Y , et al . Rapid and effective removal of As ( Ⅲ ) and As(V) using spore@Ti4+ microspheres[J]. Chemosphere, 2018, 206(9): 742-749. |
30 | Lee C G , Pedro J , Alvarez J , et al . Arsenic(Ⅴ) removal using an amine-doped acrylic ion exchange fiber: kinetic, equilibrium, and regeneration studies[J]. Journal of Hazardous Materials, 2017, 325 (5): 223-229. |
31 | Chen H , Lv K , Du Y , et al . Microwave-assisted rapid synthesis of Fe2O3/ACF hybrid for high efficient As(Ⅴ) removal[J]. Journal of Alloys and Compounds, 2016, 674(5): 399-405. |
32 | Wang Y X , Bing Q Y , Fei F J , et al . Removal of As(Ⅴ) from aqueous solution by using cement-porous hematite composite granules as adsorbent[J]. Results in Physics, 2018, 11(12): 23-29. |
33 | Paulina M , Jakub M , Tiina L , et al . Toward highly effective and easily separable halloysite-containing adsorbents: the effect of iron oxide particles impregnation and new insight into As(Ⅴ) removal mechanisms[J]. Separation and Purification Technology, 2019, 210(8): 390-401. |
34 | Oh C , Rhee S , Oh M , et al . Removal characteristics of As(Ⅲ) and As(V) from acidic aqueous solution by steel making slag[J]. Journal of Hazardous Materials, 2012, 30(4): 147-155. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[4] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[5] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[6] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[7] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[8] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[9] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[10] | Min LI, Xueru YAN, Xinlei LIU. Advances in benzimidazole-linked polymer adsorbents and membranes [J]. CIESC Journal, 2023, 74(2): 599-616. |
[11] | Yong’an CHEN, Anning ZHOU, Yunlong LI, Zhiwei SHI, Xinfu HE, Weihong JIAO. Preparation and coal pyrolysis performance of magnetic MgFe2O4 and its core-shell catalysts [J]. CIESC Journal, 2022, 73(7): 3026-3037. |
[12] | Xiqiang ZHAO, Jian ZHANG, Shuang SUN, Wenlong WANG, Yanpeng MAO, Jing SUN, Jinglong LIU, Zhanlong SONG. Study on the performance of biochar modified microspheres to remove inorganic phosphorus from chemical wastewater [J]. CIESC Journal, 2022, 73(5): 2158-2173. |
[13] | Jinsong XU, Min LIN, Xiaoping CHEN, Jiliang MA, Pengfei GENG, Xuebing BAO, Daoyin LIU, Cai LIANG. Experimental study on regeneration characteristics of stainless steel pickling waste mixed acid by fluidized bed roaster [J]. CIESC Journal, 2022, 73(5): 2242-2250. |
[14] | Xuan LIU, Yinjiao SU, Yang TENG, Kai ZHANG, Pengcheng WANG, Lifeng LI, Zhen LI. Selenium transformation in ultra-low-emission coal-fired power units and its enrichment characteristics in fly ash [J]. CIESC Journal, 2022, 73(2): 923-932. |
[15] | Liwen ZHAO, Guilian LIU. Energy system integration and catalyst regeneration cycle optimization of benzene hydrogenation to cyclohexene process [J]. CIESC Journal, 2022, 73(12): 5494-5503. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 494
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 544
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||